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Title: Higher RHIC polarization by Physics-informed Bayesian Learning
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Requested topics:

« Efficiently extract critical and strategic information from large complex data sets

» Address the challenges of autonomous control and experimentation

 Efficiency of operation of accelerators and scientific instruments

Al for data reduction of large experimental data
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Desired result: higher proton polarization

» What high-impact operational challenge can be addressed by MI/AI?
=>» Polarized protons.

* From the source to high energy RHIC experiments, 20% polarization
IS lost.

* Polarized luminosity for longitudinal collisions scales with P4, i.e., a
factor of 2 reduction!

* The proton polarization chain depends on a hose of delicate
accelerator settings form Linac to the Booster, the AGS, and the RHIC
ramp.

G‘ Brookhaven
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I * Even 5% more polarization would be a significant achievement.
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Outline
. gl%ective of proposed work: higher proton polarization in RHIC and the

 Polarized-proton acceleration chain.

« Potential avenues toward higher proton polarization.
« (1) Emittance reduction

* (2) More accurate timing of timed elements

« (3) Reduction of resonance driving terms

« Started Activities

« Gaussian Process (GP) Bayesian Optimization (BO) and physics
informed learning.

* When is ML/AI better for accelerator operations than other feedbacks
and optimizers?
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The polarized proton accelerator chain
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Topics that can improve polarization

* (1) Emittance reduction
* (2) More accurate timing of tune jumps

* (3) Reduction of resonance driving terms

k? Brookhaven
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Emittance reduction = less depolarization

* Optimized Linac to Booster transfer

* Optimized Booster to AGS transfer

« Optics and orbit correction in Booster and AGS

« Beam-based Quadrupole calibration from ORM in Booster and AGS.

« Bunch splitting in the Booster for space charge reduction and bunch
re-coalescing at AGS top energy.

G‘ Brookhaven
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Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023. 8



mailto:Georg.Hoffstaetter@cornell.edu

Linac to Booster transfer

Parameters to vary:
« Transfer line steers
« Main Booster dipol90e field

» Booster beta wave (stop-band quadrupoles) for tune toward %2 and minimum on
the foll

« Last two linac phases

* Injection bump elements and their time profile

« Scraper amplitudes

Observables to optimize:

« Transfer efficiency linac = Booster early ramp (2% absolute)

« Emittance from multi wires of the AGS transfer line (5% relative)

G‘ Brookhaven
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Booster to AGS transfer

Parameters to vary:

« Transfer line steerers

« Main AGS dipole field

« AGS RF phase

« Amplitudes of two Injection bumps

* Horizontal orbit in the snakes

* Quadrupole corrections for the snakes

* Injection to accelerator tune change

Observables to optimize:

« Transfer efficiency Booster = AGS early ramp (2% absolute)
I ©Bekiaven « - Emittance from two IPMs (10% relative)

Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023. 10
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Response Error model for the ORM

« Scan through some common sources of error to see how much ORM changes
* Find relevant parameters to include for building error-detecting model

« Goal: establish a neural network that identify error source given a measured ORM
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Sensitivity studies: error sources

« Sources or error and ranges come from past survey data

» Criteria to quantify & visualize sensitivity:

e RMS of ORM matrix

A measured - Pmode
« Beta-beating (vertical & horizontal) E_E a = Pmoget

B Bmodel
. Name | Unit | Range _
Main magnet roll error mrad [-0.5, 0.5]
Main magnet gradient error m-2 + 0.1%
Quadrupole gradient error m-2 + 0.2%
Sextupole offset error mm [-8, 8]
Snake magnet roll error mrad [-1.5, 1.5]

(,‘ Brookhaven
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Where do we put AI/ML?

ORM will give us

« BPM and Corrector Anomalies (Trust Analysis)
« Gradient errors for given conditions

« Beta-deviations from model

Dispersion measurements give us
«  BPM Consistency check for given dp/p (BPM Anomalies)
* Coupling through longitudinal motion (very slow, typically)

Tune measurements

« Betatron tune and coupling = destructive measurement in Booster/AGS
 Tune, Chrom, coupling, emittance, dp/p from RHIC Schottky

Chromaticity measurements — need to change energy and measure tune
Orbit Measurements — parasitic = most are time averaged, some turn by turn
Linear model + small nonlinearities with NN model

G‘ Brookhaven
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Orbit & Optics correction in Booster / AGS

Parameters to vary:
Corrector coils (24 per Booster plane)

Corrector coils (48 per AGS plane)

Observables to optimize:
BPM readings (24 x&y in the Booster) (100um accuracy)
BPM readings (72 x&y in the AGS) (100um for 2mm size at 25GeV)

¢ Brookhaven
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Space-charge emittance increase
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Figure 3.168: Normalized transverse emittances of polarized proton beam at AGS extraction
energy (7y = 25.5) as a function of intensity.

I =>» Splitting bunches before AGS

(\ Brookhaven

) Srooxiaven acceleration can reduce the emittance.
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Bunch splitting / coalescing

50.0 kS
Mountain range display of the wall current monitor signal for the 4:2:1 Booster merge used for EBIS Au.
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: Rf gap voltages, harmonics, and cavities involved in the standard 4:2:1 Booster merge used for EBIS Au. The x-axis is

and B3 are used for h=4 and h=1 the relative voltages here should be correct.

ms from Bt0 and the y-axis is the voltage reference. The h=2 cavity has 2 gaps, and A3 and B3 have 1 gap. So, since both A3

Splitting in the booster and coalescing after AGS accelerator

C-AD MAC

reduces space charge and emittance growth =» more polarization
Georg.Hoffstaetter@cornell.edu
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Bunch splitting and coalescing

Parameters to vary:

3 RF amplitudes and phases, and their timing
Observables to optimize:

Mountain range width (5% relative)

Mountain range oscillations (10% of a sigma)
Baby-bunch currents (2%)

Emittance in the multi-wire to the AGS (5% relative)

Emittance from two IPMs (10% relative)

¢ Brookhaven
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Timing of tune jumps

The G-gamma meter and accurate energy vs. time

(1) Measure the energy by orbit + revolution frequency measurement

(2) Measure of energy by field + revolution frequency measurement

0.1

(3) Measure energy by spin flip at every integer spin tune
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Improved energy timing

Parameters to vary:

Time profile of the time-jump quadrupoles
Observables to optimize:

Revolution frequency (1.E-6)

Radial offset from BPM readings (20mu average)

Main dipole fields Hall-probe at injection (0.1%) + integrating coil (2%)

E(t) by measure f(t), x(t), B(t), P(t)

¢ Brookhaven
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Reduction of AGS resonance driving terms

1.0 I .
Spin
tune gap
Polarization is preserved in the AGS with two Sf 0.9l
partial helical dipole snakes (10% and 6% o?’ '
rotation) A
5]
Provides spin tune ‘gap’ where imperfection .
and vertical intrinsic resonance condition are O 0.8} H{ ||| Hor rgsonance
never met QC) LF
« vi #N (full spin flips) 2 - | ]_ Tune
* Vs #FN+-Q < O0.7H | TR | jump
Horizontal resonance condition still met g : :
e vo =N +-Q, "3 - Vs
* Horizontal resonance are weak, but ~ © 0.6} — a1
many (82 crossings) (' i
* Currently handled with fast tune : ‘ — @y
jump 0.5 : i : [TT LI 17111
AQ, =0.04, 100 s ' 10 20 30 40
Gy
Partial snakes drive horizontal depolarizing resonances
~y - .
(&) Binokhavar = Compensate by other coupling elements, e.g., skew quads
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Reduction of AGS resonance driving terms

« Two snakes, separated by 1/3 circumference
« Modulated resonance amplitude highest
near Gy = 3N (when snakes add
constructively)
« Horizontal resonances occur
every 4-5 ms at the standard AGS Horizontal Resonance Amplitudes in AGS
acceleration rate

—e— Baseline —o— Corrected

2.0 nnnﬂ’r

ML/AI:
Physics informed 42
Learning of the optimal = Ll Ll Led bl
skew quad strength + = o
optimal timing. AiE A
(a)
P ey e—— s o

2% Brookhaven 0.0 =ese- .
k' National Laboratory 10 20 30 40
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Reduction of resonance strengths

Parameters to vary:

14 Skew quad amplitudes at each of 80 resonances
Timing of skew quad changes

Observables to optimize:

Polarization after the ramp (2% relative)

Polarization at intermediate energies (2% relative)

G‘ Brookhaven
National Laboratory
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Activities
Kickoff Collaboration meeting @ Cornell, August 25, 2023 — successful in person
Weekly meetings Mondays 3:30pm of all collaborators

Interface with weekly meeting Wednesdays 11am on digital twins from Linac to AGS

Semi-weekly ML/Al software meeting Friday’s on beam & ML computer standards

To be addressed: Potential avenues toward higher proton polarization
* (1) Emittance reduction

* (2) More accurate timing of timed elements

* (3) Reduction of resonance driving terms

I G‘ Brookhaven
National Laboratory
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Dominant Participants

Dominant participants:

BNL: Kevin Brown, Weinin Dai, Bhawin Dhital, Yuan Gao, Kiel Hock, Bohong Huang,
Natalie Isenberg, Nguyen Linh, Chuyu Liu, Vincent Schoefer, Nathan Urban

Cornell: Georg Hoffstaetter de Torquat, Lucy Lin, Eiad Hamwi
SLAC: Auralee Edelen

JLAB: Malachi Schram

RPI: Yinan Wang

Radiasoft: Nathan Cook, Jon Edelen, Chris Hall

Teams: (1) Accelerator simulation — digital twins, (2) ML application — code
development, (3) Experiment 2 simulation comparison.

G‘ Brookhaven
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Started Activities

(1) Emittance reduction by linac 2 booster optimization:
a) Adjust the model to hardware and alignment data for the L2B line
b) Simulate scraping of beam in the Booster, including ionization foil with Bmad

c) Write Bmad function that produces loss rate vs. last two L2B correctors and bring to OpenAl
Gym format.

d) Apply established ML codes to this function.
(2) Emittance reduction by booster optimization

a) Compare Bmad to established Zgoubi results and compare to BPM/alignment measurements

b) Establish booster-orbit response to corrector changes and produce function that gets minimized
by optimizing system parameters, e.g. element alignments, bring into OpenAl gym format.

G‘ Brookhaven

National Laboratory

I c) Apply established ML codes to this function.
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Started Activities

(3) Emittance reduction by B2A transfer:
a) Adjust the Bmad model to hardware and alignment data for the B2A line
b) Simulate Booster phase space transfer through this line and compare to measured harp profiles

(4) Emittance reduction by re-bucketing

a) Adapt Bmad bunch-merging code for the EIC’s RCS to the Booster (bunch splitting) and AGS
(bunch merging)

b) Compare Bmad to established Python re-bucketing code for Booster and AGS

c) Write a function that characterizes bunch splitting/merging efficiency from RF parameters for
ML/AI optimization.

k? Brookhaven

National Laboratory
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Started Activities

(5) Depolarization reduction by Skew-quad resonance minimization in the AGS:

a) Detailed Bmad model of the AGS at all energies overcoming:
i)  Non-symplecticity of tracking through field maps of snakes
i) Introduce differentiable models of snake fields and match these to their field maps

iii) Compensate the closed orbit, optics, coupling, and dispersion (esp. vertical) for these maps at all energies
b) Compute resonance strength of the Bmad model and compare to established results
c) Compare resonance strength to previous measurements

d) Define optimized skew-quad compensation schemes at all 82 resonances, minimizing vertical
dispersion, coupling, optics errors, and speed of skew-quad changes

(6) Improved g-gamma meter by combining it's 3 measurements
a) Technique discussed, Team being formed

(7) Combined and verified evaluation of existing emittance measurement techniques
(through Radiasoft)

a) Technique discussed, Team is formed
Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023. 27
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Optimizers for different applications

less —

Model-Free
Optimization

Y/

Observe performance change dfter a
setting adjustment

- estimate direction or apply
heuristics toward improvement

gradient descent
simplex
ES
(,‘ Brookhaven

National Laboratory
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assumed knowledge of machine >  more
4 ™
Model-guided Global Modeling +
Optimization Feed-forward Corrections
J- Kirschner
Update a model at each step Make fast system model
= provide initial guess (i.e. warm
- use model to help select the next P ) g ( )
point start) for settings or fast compensation
. J
Bayesian optimization ML system models +
reinforcement learning inverse models
Courtesy Auralee Edelen
C-AD MAC 20 December 2023. 28
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Characteristics of involved optimizations

1. Optimal parameter settings are hard to find, and the optimum is
difficult to maintain.

2. The data to optimize on has significant uncertainties.
Models of the accelerator exist.
4. A history of much data is available and can be stored.

0

Is this type of problem suitable for Machine Learning?
Why would ML be better suited than other optimizers and feedbacks?

G‘ Brookhaven
National Laboratory
Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023.
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Gaussian Process
* GP model built with scikit-learn library

» A probability distribution over possible functions )
that fit a set of points % e
» Mean function + Covariance function / ,: ~

f(x) ~ GP(m(x), k(x,x")) () -ox,)

* Kernel: covariance function k(x;, x;) of the input variables

k(x,x1) - k(xq, %)
« Covariance matrix K = k(X, X) = = " :

k(xe,x1) - k(xe, xt)

« At a sample point x;, Gaussian process returns mean u(x;|X) = m(x;) +
I k(x, X)K(f(X) — m(X)) and variance a2(x;|X) = k(x;, x;) — k(x;, X\)K k(X x;)

(,‘ Brookhaven
National Laboratory
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Acquisition Function

» Guide how input space should be
explored during optimization

« Combine predicted mean and variance
from Gaussian Process model
* Probability Improvement (PI)
» Expected Improvement (EI)

» Upper Confidence Bound (UCB)

UCB(x) = u(x) + ko (x)

(,‘ Brookhaven

National Laboratory
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Merit of physics-informed optimization

Neural Network System Models + Bayesian Optimization

Combining more expressive models with BO = important for scaling up to higher-dimensional
tuning problems (more variables)

Good first step from previous work: use neural network aw
system model to provide a prior mean for a GP
prior mean cp . .
i : Jetem Summer '22 undergrad intern
Used the LCLS injector surrogate model for prototyping )
: . _ - Connie Xu
variables: solenoid, 2 corrector quads, 6 matching quads .
. . RO . i ata
objective: minimize emittance and matching parameter
Correlations Between
Predictions and Ground Truth Mean and Standard Error of Best -Emittance*bmag per Iteration (50 Trials)
Correlations between Model2 and Surrogate (Ground Truth) (10k samples) —_— 0 - -0.6 = e S S—
°
E T -08
: E £
<z T -1.0
2 = :
- 2 £.3
o; E ) > 3
St £ S~ E-14
3: 2 —15| —— surrogate (Ground Truth) =
v
(U] £ —— Model2 g2-16
v —-20 g, Constant (Default)
E b P b 0.460 0.465 0.470 0.475 0.480 0.485 ¢ -138 Ground Truth
00 -5 B0 -5 oo is S0 i3 00 SOL1:solenoid field scale (kG*m) L 4 Modell
bee -2.0
Model 2 —— Model2
0 10 20 30 40 50

. . . " . iteration
Even prior mean models with substantial inaccuracies provide a Beta = 2.0

boost in initial convergence Courtesy
-> now testing on machine and refining approach

Forthcoming paper at NeurlPS ML for Physical Science Auralee Edelen

Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023. 32
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Unknown system parameters

Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:
static error sources (e.g. magnetic field nonlinearities, physical offsets) ' —— O NN
time-varying changes (e.g. temperature-induced phase calibrations) ®  0xIMPACT-T

-
F'S

-
[N)

+ 0y meas.

=
=]

o
©

Want to identify these to get better understanding of machine = fast-executing ML model

allows fast | automatic exploration of possible error sources simultaneously

RMS Beam Size (mm)
=] =]
£ o

0.2 + 4 F
calibration transforms : ; :
(single node per input) frozen neural network 0.0 WlthOUIt Callbrathn . '
g ) 3 layers trained on 045 046 047 048 049  0.50
v=flwx+ b , A lati Inputs Integrated Solenoid Field (kG-m)
< SHmCiacen Laser radius y
A » Laser spot sizes 0x NN {
injector output beam Pulse length Outputs =121 & o WBRETET )
. Beam size (x,y) E .o + 0y meas.
settings scalars Charge : = y
Solenoid Emittance (x,y) 8o
LOA phase Bunch length £ o
0.6
LOB phase 3 »
SQ quad 0®
CQ quad e 027 " : :
6 m?atching quads 00| With calibration
I . " o 0;14 0,215 0.216 0.217 0:48 0.219 0.‘50
aser image . Iongltut;lllnall Integrated Solenoid Field (kG-m)
ransverse phase space
Calibration offset in solenoid strength found automatically with neural network model (trained in simulation, then calibrated to machine) Courtesy
Example above is simulation-to-machine, but can adapt model over time as well Auralee Edelen

First studies look promising = current work focuses on examining robustness and extending to larger subsystems
Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023. 33
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Advantages of Bayesian Optimization

s"[s Summary of optimization methods

3 OT Op atlo ethod
Nelder- | Gradient Powell / L-BFGS Genetic Bayesian
Mead descent RCDS algorithm | optimization
Sample /high /high Low High
efficiency
Computational | Low/ Low Low Low High
cost of picking the (e.g. (esp. in high
next point sorting) dimensions)
Multi-objective No No No No Yes Yes
Sensitivity to local High High High High Low Low
minima (builds a global
I model of f)
Sensitivity to High High High (Powell) High Low
noise Low (RCDS) (can model
noise itself)
¢ Brookhaven
National Laboratory
Georg.Hoffstaetter@cornell.edu C-AD MAC

Nelder | Gradient descent | Powell | L-BFGS | Genetic algorithm Bayesian
-Mead / RCDS optimization
Requires to No Yes No Yes No No
compute or
estimate
derivatives of f
Evaluations of f No No No No Yes No
inherently done
in parallel
Hyper- Initial Step size: a # fit Accuracy |+ Population size Kernel
parameters simplex | (+momentum: f8) points | of hessian |+ Mutation rate function
estimate |+ Cross-over rate Kernel length
Noise ¢ Number of scales,
level generations amplitude
Noise level
Acquisition
function
20 December 2023. 34
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Why is Bayesian Optimization suitable?

1. The data to optimize on has significant uncertainties
=>» No derivatives have to be computed.

2. Models of the accelerator exist

=>» the expected functional form can be included in the function search
(Physics-informed learning)

3. A history of much data is available and can be stored
=>» All past data are included to model the function to be optimized.

G‘ Brookhaven
National Laboratory
Georg.Hoffstaetter@cornell.edu C-AD MAC 20 December 2023.
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Summary

» A proposal to DOE-NP has been accepted for the
enhancement of proton polarization using ML/Al. Goal: 5%.

Several accelerator optimizations can impact polarization.

These topics are of the type suitable for Bayesian Optimization

Excellent team has formed, items being addressed:
«  Emittance reduction (orbit, optics, bunch splitting)
*  More accurate timing of quadrupole jumps (G-gamma meter)

«  Reduction of resonance driving terms (Horizontal spin matching with
skew quads)
I k? Brookhaven

National Laboratory
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