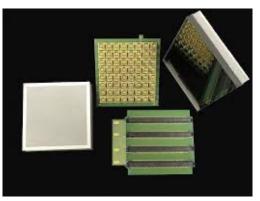
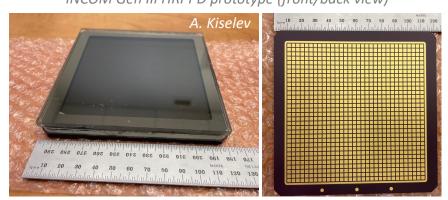

ePIC hpDIRC

Greg Kalicy

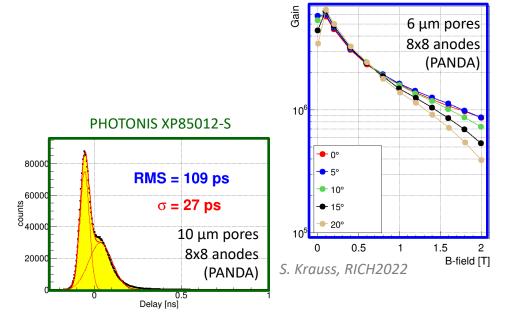
HPDIRC PHOTOSENSORS


hpDIRC sensor: Microchannel-Plate PMT

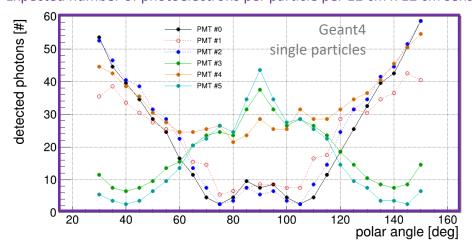
- ➤ Baseline sensor for hpDIRC: 2" MCP-PMTs from Photonis* or Photek
 Potential solution: DC-coupled Incom HRPPD
 - > Evaluation studies in preparation for both solutions (eRD110 + Jlab and pfRICH)
 - > In the future hpDIRC Prototype at CRT can be used for prototype sensor studies
- ➤ MCP-PMTs in principle capable of meeting all hpDIRC requirements (A. Lehmann@RICH2022)
- Successful application in Belle-II TOP (Hamamatsu 1" MCP-PMTs) and PANDA/EIC DIRC beam tests (Photonis 2" MCP-PMTs)
- ➤ Lifetime-enhanced 2" MCP-PMTs commercially available from Photonis* and Photek
 - with suitable DC-coupled anode configurations
- Good performance of 8x8 anode versions in PANDA MCP-test stands
 (see S. Krauss, RICH2022), configuration with smaller anodes to be validated
- Ongoing development at Incom: 12 cm-sized Gen III HRPPDs, 32x32 anodes Active project, supported by EIC PED funds, baseline sensor for ePIC pfRICH



Photek MAPMT 253


INCOM Gen III HRPPD prototype (front/back view)

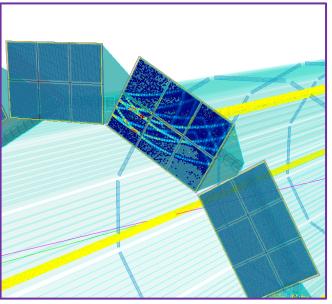
PHOTOSENSORS


hpDIRC sensor requirements

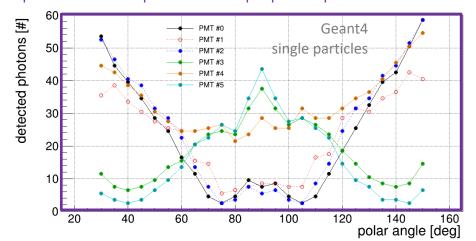
- ➤ Single photon sensitivity in ePIC magnetic field: 10⁶ gain at ~ 1T
- > Fast timing for single photons: timing precision (rms) < 100 ps
- > Large active area ratio for tiled sensors: goal > 75%
- ➤ High PDE in visible range: goal > 25% at 400 nm
- > Small pixels: anode pixel size < 3.5 mm
- ➤ Tolerance for high photon rates: goal > 0.5 MHz/cm²
- Tolerance for high occupancies: up to 200+ photoelectrons per particle, need DC-coupled anodes
- Long lifetime: goal > 10 C/cm²

PHOTONIS MAPMT 253

Expected number of photoelectrons per particle per 12 cm x 12 cm sensor



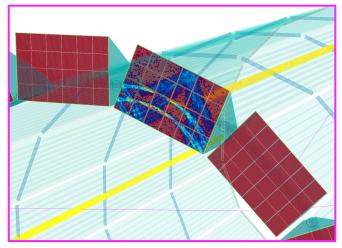
PHOTOSENSORS


hpDIRC sensor requirements

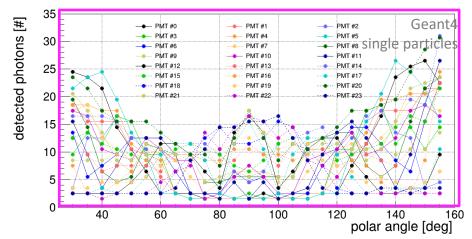
- ➤ Single photon sensitivity in ePIC magnetic field: 10⁶ gain at ~ 1T
- > Fast timing for single photons: timing precision (rms) < 100 ps
- ➤ Large active area ratio for tiled sensors: goal > 75%
- ➤ High PDE in visible range: goal > 25% at 400 nm
- > Small pixels: anode pixel size < 3.5 mm
- > Tolerance for high photon rates: goal > 0.5 MHz/cm²
- > Tolerance for high occupancies: up to 200+ photoelectrons per particle, need DC-coupled anodes
- Long lifetime: goal > 10 C/cm²

hpDIRC Simulation with Incom HRPPD

Expected number of photoelectrons per particle per 12 cm x 12 cm sensor

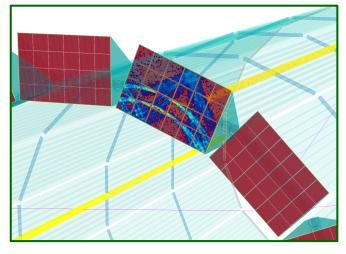


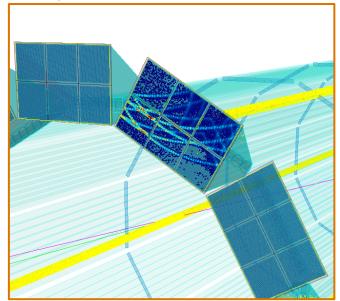
PHOTOSENSORS


hpDIRC sensor requirements

- ➤ Single photon sensitivity in ePIC magnetic field: 10⁶ gain at ~ 1T
- > Fast timing for single photons: timing precision (rms) < 100 ps
- > Large active area ratio for tiled sensors: goal > 75%
- ➤ High PDE in visible range: goal > 25% at 400 nm
- > Small pixels: anode pixel size < 3.5 mm
- Tolerance for high photon rates: goal > 0.5 MHz/cm²
- Tolerance for high occupancies: up to 200+ photoelectrons per particle, need DC-coupled anodes
- Long lifetime: goal > 10 C/cm²

hpDIRC Simulation with baseline 2" MCP-PMTs


Expected number of photoelectrons per particle per 6 cm x 6 cm sensor


HPDIRC PHOTOSENSORS

- Measurements of all three types of sensors are in preparation by Glasgow group
- Main goals:
 - Demonstrate that the tubes do not suffer from coherent oscillations at high intensities
 - > Single-photon timing precision (both transit time spread and rms timing)
- Photek tube and adapter board purchased by Jlab
- Photonis tube potentially available from eRD14 effort
- > HRPPDs purchased for tests, will need scheduling to be shared between groups
- Future tests:
 - Collection and Quantum efficiency
 - Uniformity
 - > Integration with EICROC

hpDIRC Simulation with baseline 2" MCP-PMTs

hpDIRC Simulation with Incom HRPPD

