

dRICH photosensors status and risk mitigation

Roberto Preghenella INFN Bologna on behalf of the dRICH Collaboration

TIC meeting, 6 November 2023

preghenella@bo.infn.it

dRICH SiPM are part of the SiPM Long-Lead Procurement on 14 September 2023 dRICH SiPM reviewed at the

Final Design Review for SiPM applications in ePIC detector sub-systems

positive feedback from reviewing committee recommendation to commence SiPM procurement no further recommendation

The dual-radiator (dRICH) for forward PID at EIC

compact and cost-effective solution for broad momentum coverage at forward rapidity

- radiators: aerogel (n ~ 1.02) and C₂F₆ (n ~ 1.0008)
- **mirrors:** large outward-reflecting, 6 open sectors
- Sensors: 3x3 mm² pixel, 0.55 m² / sector
 - single-photon detection inside high B field (~ 1 T)
 - outside of acceptance, reduced constraints
 - SiPM optical readout

p = [3.0, 50] GeV/c η = [1.5, 3.5] e-ID up to 15 GeV/c

Environment

radiation damage estimates

moderate radiation, 1000 fb⁻¹ integrated \pounds corresponds to ~ 10¹⁰ n_{ea}/cm²

MARCO magnetic field maps

non-uniform, strong magnetic field ~ 0.7 T field lines ~ parallel to photodetector surface

The dual-radiator (dRICH) for forward PID at EIC

compact and cost-effective solution for broad momentum coverage at forward rapidity

- **mirrors:** large outward-reflecting, 6 open sectors
- **Sensors:** 3x3 mm² pixel, 0.55 m² / sector
 - single-photon detection inside high B field ($\sim 1 \text{ T}$) \bigcirc
 - outside of acceptance, reduced constraints 0
 - SiPM optical readout 0

3x3 mm² pixel size optimises performance and number of SiPM / electronics readout channels

not the dominant contribution to the resolution \rightarrow will <u>not benefit from smaller size pixels</u> \rightarrow performance requirements already met bigger pixel size will have impact on gas \rightarrow will start becoming dominant contribution

p = [3.0, 50] GeV/c η = [1.5, 3.5] e-ID up to 15 GeV/c

The dual-radiator (dRICH) for forward PID at EIC

compact and cost-effective solution for broad momentum coverage at forward rapidity

ePIC GEANT4 simulation

p = [3.0, 50] GeV/c ŋ = [1.5, 3.5]

Photodetector unit

conceptual design of final layout

SiPM sensor matrices mounted on carrier PCB board

- 4x 64-channel SiPM array device (256 channels) for each unit
 - need modularity to realise curved readout surface
- 1240 photodetector units for full dRICH readout
 - 4960 SiPM matrix arrays (8x8)
 - 317440 readout channels

SiPM technical specs

baseline sensor device

64 (8x8) channel SiPM array 3x3 mm² / channel

Parameters	Value	Notes (all parameters at the recommended operating voltage and T = 25 C, unless specified)					
Device type	SiPM array						
Number of channels	64	8 x 8 matrix					
Active Area	3 x 3 mm ²	active area of one channel, total active area is 64 x 3 x 3 mm ²					
Device Area	< 28 x 28 mm²	device area should be small such as to have > 75% fraction of active area over device total area					
Pixel Size	40 - 80 um	pitch of the microcell SPAD					
Package Type	surface mount						
Operating voltage	< 64 V						
Peak Sensitivity	400 - 450 nm						
PDE	> 35%	at peak sensitivity wavelength					
Gain	> 1.5 106						
DCR	< 1.5 MHz						
Temperature coefficient of Vop	< 60 mV / C						
Direct crosstalk probability	< 10%						
Terminal capacity	< 600 pF						
Packing granularity							
Vop variation within a tray	< 300 mV	Vop variation between channels in one device					
Recharge Time	< 100 ns	ctau recharge time constant					
Fill Factor	> 70%						
Protective Layer	silicone resin (n = 1.5 - 1.6)	radiation resistant, heat resistant (up to T = 180 C)					
DCR at low temperature	< 10 kHz	at T = -30 C					
DCR increase with radiation damage	< 1 MHz / 10 ⁹ neq	at T = -30 C, after a radiation damage corresponding to 109 1-MeV neutron equivalent / cm2 (neq)					
Residual DCR after annealing	< 25 kHz / 10 ⁹ neq	at T = -30 C, after a radiation damage of 10 ⁹ neq and a 150 hours annealing cycle at T = 150 C					
Single photon time resolution	< 200 ps FWHM	corresponding to < 85 ps RMS					

very important parameters to ensure detector performance over the years

we will evaluate as
 part of QA, testing
 sensor samples in
 received batches

Studies of radiation damage on SiPM

all results are reported at T = -30 C

INFŃ

INFN

Repeated irradiation-annealing cycles

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- consistent irradiation damage
 - DCR increases by ~ 500 kHz (@ Vover = 4)
 - \circ after each shot of 10⁹ n_{eq}
- consistent residual damage
 - ~ 15 kHz (@ Vover = 4) of residual DCR
 - builds up after each irradiation-annealing

annealing cures same fraction of newly-produced damage

 $\sim 97\%~$ for HPK S13360-3050 sensors

cividec

- laser pulse at 50% of signal
- SiPM signal at <u>0.5 pe</u> (average amplitude) time-amplitude correlation (walk) corrected

laser-oscilloscope synchronization

measured to be σ_{sync} = 30 ps

Timing performance measurements with ALCOR

Automated multiple SiPM online self-annealing

system for online self-annealing with temperature monitor and control of each individual SiPM

Detailed studies of SiPM online self-annealing

test on a large number of proton irradiated sensors how much damage is cured as a function of temperature and time

in this study, the same sensors have undergone self-annealing in increasing temperature steps and increasing integrated time steps

- started with T = 100 C annealing
 performed 4 steps up to 30 hours integrated
- followed by T = 125, 150 and 175 C

fraction of residual damage seems to saturate at 2-3% after ~ 300 hours at T = 150 C

continuing at higher T = 175 C seems not to cure more than that

Automated multiple SiPM online self-annealing

remember oven annealing at T = 150 C "annealing cures same fraction of newly-produced damage ~ 97% for HPK S13360-3050 sensors"

fraction of residual damage seems to saturate at 2-3% after ~ 300 hours at T = 150 C

we eached the oven limit (aggressive annealing) with an online self-anneling process

Automated multiple SiPM online self-annealing

tested on a number of neutron irradiated sensors the details of annealing curve at fixed temperature

annealing at same temperature with increased number of steps to highlight the details of the damage decreasing trend

• at T = 150 C

- sudden decrease of damage in short time
- \circ followed by a slower rate decrease
- eventually meeting the orange curve
- \circ and decreasing at ~ same rate

Automated multiple SiPM online self-annealing

tested on a number of neutron irradiated sensors the details of annealing curve at fixed temperature

annealing at same temperature with increased number of steps to highlight the details of the damage decreasing trend

• at T = 175 C

- faster sudden decreasein short time
- followed by a faster rate decrease
- eventually reaching the plateau

Automated multiple SiPM online self-annealing

comparison between two annealing temperatures

we know both reach the oven limit of ~ 2-3% residual damage

• at T = 175 C

- there seems to be a faster "sudden" cure
- followed by a similar rate of reduction with time
- oven-level annealing reached faster at T = 175 C
 - o < 10 hours integrated</p>
- oven-level annealing not yet reached at T = 150 C
 - \circ \hfill we are still running the setup
 - prediction it will be reached < 100 hours integrated

New Hamamatsu SiPM prototypes

newly-developed Hamamatsu SiPM sensors

based on S13360 series few samples of 50 μm and 75 μm SPAD sensors

on paper they look VERY promising

- improved NUV sensitivity
- improved signal shape
- improved recharge time

mounted on EIC SiPM test boards we will characterise and test them in full irradiation, annealing, laser, ...

2022 test beam at CERN-PS

dRICH prototipe on PS beamline with SiPM-ALCOR box

beamline shared with LAPPD test

ALCOR inside

successful operation of SiPM

irradiated (with protons up to 10¹⁰) and <u>annealed</u> (in oven at 150 C)

time coincidences

2022 test beam at CERN-PS

8 GeV negative beam (aerogel rings)

hit - reference time (ns)

time coincidences

EIC ePIC-dRICH SiPM photodetector prototype

4x SiPM matrix arrays (256 channels) flex PCB cooling stack (water-cooled Peltier) minicrate with fron-end electronics (ALCOR ASIC inside)

PhotoDetector Unit (PDU)

Readout Box

cables and services

DAQ and DCS computers

auxiliary control electronics crates

gigabit ETH switch for DAQ and DCS

low voltage and high voltage power supplies

SiPM photodetector readout box

dRICH

DAQ FPGAs and clock distribution

2023 test beam at CERN-PS

successful beam test with prototype SiPM photodetector units (CERN-PS, ended on 18th October)

ePI

Risk and mitigation

• radiation damage

- using estimates from ePIC background group
- increasing the expected fluence by a <u>10x safety factor</u>

• dark count rate mitigation

- measurements are by default performed at T = -30 C
 - lower operation in ePIC should be possible
- acquire equipment for lower temperature cooling
 - operation at T = -40 C would give a <u>further 2x DCR suppression</u>

higher efficiency SiPM sensors

- \circ most of the measurements performed on S13360-3050 (50 μm SPAD) sensors
- \circ ~ preliminary tests on commercial 75 μm SPAD SiPM very promising
 - better time resolution at lower Vover
 - higher PDE at same Vover
 - (or alternatively) lower DCR at same PDE
- \circ prototype SiPM sensors from Hamamatsu in house (both 50 and 75 μm SPAD)
 - improved NUV sensitivity, improved signal shape and recharge time
 - we will test them with irradiation soon

• annealing protocol

- preliminary online self-annealing results (2022) set the 10x lifetime increase mentioned in reviews
- o recent detailed studies show that a further 3x lifetime increase is accessible
- gearing up towards engineering of the process for TDR
 - ideas in place, to be integrated with electronics

Current & future plans: sensor optimisation and risk mitigation

characterisation measurements

- measurements of time resolution after irradiation and annealing
- define SiPM performance and comparisons based on <u>SNR</u> (DCR, PDE, SPTR)
- o full evaluation of <u>75 µm SPAD</u> sensors (ie. Hamamatsu S13360-3075)
 - PDE is larger than 50 µm, SPTR is better, DCR is similar
- full evaluation of <u>new Hamamatsu SiPM</u> prototypes (based on S13360 technology)
 - improved NUV sensitivity, improved signal shape and recharge time
 - already received 50 µm and 75 µm samples

• operation and annealing

- test low-temperature (down to T = -40 C) operation with <u>fluid-based chiller</u>
 - evaluate possibility of using the system in heating mode for annealing
- study the details of "in-situ" online <u>self-induced annealing</u>
 - forward (safer, but larger currents) VS. reverse (less safe, lower currents) bias operation
 - recovery vs. annealing temperature and time
 - refine technical solutions (and electronics) for monitor and control in the experiment

• engineering run with FBK

- optimisations for the EIC of the already-mature NUV-HD technology (lower field / shaping to improve DCR)
- development of single-die multi-channel SiPM sensor (achieve high fraction of active area with a low-cost process)

This list is not exhaustive and only contains the most important items and steps towards the TDR

Current & future plans: electronics

front-end electronics

- full test and evaluation of <u>improved ASIC</u> (ALCOR-v2, 32-channels, wirebonded)
 - recently received chips from MPW production
 - will be mounted on electronics for beam test of dRICH prototype (October 2023)
- developments toward <u>final ASIC version</u> (ALCOR-v3, 64-channels, BGA package)
 - upgrade front-end to improve time resolution
 - include digital shutter, hysteresis to discriminator and other optimisations
 - optimise chip layout for "flip-chip" BGA packaging

readout electronics

- design and develop first prototype RDO
 - target is a beam test in 2024

radiation tolerance

- measure radiation damage / tolerance of susceptible components
 - ALCOR
 - FPGA
- measure SEU rates
 - and latch-ups
 - verify monitor watchdogs are effective to protect

This list is not exhaustive and only contains the most important items and steps towards the TDR

END

SiPM cooling for low-temperature operation (-30 °C or lower)

external chiller with fluid recirculation (ie. siliconic oil) the chiller here one is just a commercial example cooling and heating capacity could use heating capability for annealing? must be demonstrated to be feasible cooling capacity at -40 C is large (1.5 kW)

Û°	General & Temperature Control	ontrol							huber		
	Temperature range	-5525	0°C								
4	Temperature stability	±0,01 K									
¢]	Heating / cooling capacity										
	Heating capacity	6 kW									
	Cooling capacity	250	200	100	20	0	-20	-40	-50	°C	
	o county supraticy	6	6	6	6	6	4,2	1,5	0,65	kW	

Commercial SiPM sensors and FBK prototypes

	board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes		EGNING RESELER
		S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al	PHOT	
	HAMAI	S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD		
	HAMA2	S14160 3050HS	50	38	50		silicone	newer model lower V _{bd}		Onthese
		S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness		
	SENSI	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}	N	Î
	SENSL	MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version	ON Semiconductor®	3.95 mm
	BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD	S BROADCOM	

multiple producers: different technologies, SPAD dimensions, V_{bd}, electric field ...

High-temperature annealing recovery

comparison at same Vover not totally fair

Comparison between different sensors

important to consider PDE (and SPTR) → SNR ~ PDE / DCR unlikely 2x larger DCR is matched by 2x larger PDE

SiPM photodetector unit – PDU

ALCOR ASIC: integrated front-end and TDC

developed by INFN-TO

64-pixel matrix mixed-signal ASIC current versions (v1,v2) have 32 channels, wirebonded final version will have 64 channels, BGA package, 394.08 MHz clock

• the chip performs

- signal <u>amplification</u>
- conditioning and event <u>digitisation</u>

• each pixel features

- 2 leading-edge discriminators
- <u>4 TDCs</u> based on analogue interpolation
 - <u>20 or 40 ps LSB</u> (@ 394 MHz)
- digital shutter to enable TDC digitisation
 - suppress out-of-gate DCR hits
 - 1-2 ns timing window
 - programmable delay, sub ns accuracy

• single-photon time-tagging mode

- <u>continuous readout</u>
- also with Time-Over-Threshold

fully digital output

8 LVDS TX data links

Laser timing measurements with ALCOR

climatic chamber

Laser timing measurements with ALCOR

Laser timing measurements with ALCOR

climatic chamber

• SiPM signal at <u>0.5 pe</u> (average amplitude) time-amplitude correlation (walk) corrected

measured to be σ_{sync} = 30 ps

New SiPM custom boards for characterisation (2023 program)

• 35 new boards have been produced

- same design from 2020
- populate only 3 rows
 - 4 sensors, for minimal statistical sample
- sensors from Hamamatsu
 - S13360-3050
 - S13360-3075
 - S14160-3050
- \circ replaced 50 Ω RC resistors with ferrite beads
 - allow to perform annealing
 - same components used for prototype

• irradiation studies

- proton energy scan (TIFPA)
 - irradiation done in June 2023
- neutron damage (LNL)
 - irradiation to be done in August 2023
- more proton irradiation (TIFPA)
 - November December 2023

• annealing studies

- online annealing
 - forward and reverse bias
- detailed studies of annealing techniques
 - time and temperature dependence
 - comparison of different techniques

Characterisation of new SiPM boards

INFŃ