Neutron angular distribution and dose in ZDC

ePIC TIC meeting 20 Nov 2023 Yuji Yamazaki (Kobe University)

1

Introduction: neutron rate and dose: order estimation possible?

- Neutron dose: about 20 kJ/yr total
 - Assuming 100 GeV dose / event ~ 1.6×10^{-8} Joule / event
 - − *ep* event rate 600 kHz @ 10^{34} cm⁻²s⁻¹ → 0.01 J/s, 20% of events with neutron ⇒ 2 × 10^{-3} J/s, or 20kJ/yr for the entire ZDC (assuming total absorption, ignoring direct π^0 s)
 - The event rate (photoproduction) may be as higher as 2 MHz
- We need to estimate the weight to be absorbed
 - LHCf number: 1/3 of dose per kg (shower concentrated in 3kg material !!) i.e. almost 10kGy/yr
 - This corresponds to 10^{14} neutrons/cm² using ILC number I had somewhere
 - It should be quite a bit more dilute at the EIC ... but question is how much
- Angular distribution of the incident particles is important
 - Naively: the dose (energy per weight) $\propto E_{beam}^3$ (if shower size \ll primary neutron spread)
 - linearly with energy, the neutron cone size $\propto 1/E_{beam}^2$
 - Most of the dose at 275 GeV

	40 GeV	100 GeV	275 GeV	
Luminosity per unit of time	0.61	1.0	0.154	
$\left(E_{pbeam}/100 \text{ GeV}\right)^3$	0.03	1.0	3.2	2

Estimating faction of events with a neutron at the ZDC (1) p_T measurement at HERA to estimate the fraction in the aperture

- 27.5 x 820 GeV data (year 2000)
- Using scintillator hodoscope embedded in the ZDC (1cm wide)
- Slope is steeper for high-momentum neutrons: $x_L \equiv \xi = p_n/p_{pbeam}$

NPB 776(2007) 1-37

Fraction of DIS events with a high-momentum neutron

- The observed fraction with a neutron in *ep* collisions at HERA/ZEUS
 - given in an earlier ZEUS publication: NPB 637 (2002) 3-56
 - We expect and assume that the leading neutron spectrums are the same for *ep*, *pp* and beam-gas *pA* since the ZDC is on the proton-beam direction
- The result is basically flat in (x, Q^2)
 - only a strong function of $\xi = x_L$
 - Suggesting that the assumption above is correct
- This number is visible fraction for < 0.75mrad
 - to be extrapolated using the p_T slope

Fig. 13. Neutron production ($\theta_n \le 0.8$ mrad) for the DIS region, $Q^2 > 4 \text{ GeV}^2$, as a fraction of the inclusive cross section and as a function of x for the low ($0.2 < x_L < 0.64$), medium ($0.64 < x_L < 0.82$), and high ($0.82 < x_L < 1$) x_L ranges, in the indicated bins of Q^2 . The dotted lines show the result of fitting a power law in x to the ratio. The solid lines show the result of a fit to the ratio linear in both $\ln x$ and $\ln Q^2$, as discussed in the text. Not shown are the correlated systematic uncertainties given in Table 1.

33

Extrapolated differential and integrated %fraction

- ZEUS aperture was 0.75mrad
- The fraction was extrapolated to infinity assuming the exponential behavior (slide #3)
 - In practice we should have tail, though: this is a lower limit number
- Most are within < 0.75mrad at HERA for high ξ , while many are outside for low ξ
 - EIC aperture is 4mrad: most of the neutrons (> 20% of events) reaches to ePIC ZDC angular-wise Average energy: ~ 100 GeV for 275 GeV run (need data for low ξ)

5

- Only 20% of events with fast neutron?? This was a mystery at HERA, eager to see ePIC result

Neutron spot size

- $b \sim 8 \text{ GeV}^{-2}$ at high ξ , as measured at HERA
 - Average $p_T^2 \sim 0.12 \text{ GeV}^2$ or $p_T \sim 0.3 0.4 \text{ GeV}$ 0.3 GeV / 200 GeV = 1.5mrad
 - Smaller than the EIC aperture size (12 cm aperture radius @ 35m: ~ 4mrad)
- This means the neutrons are $\ll 1/e$ at the edge of the aperture
 - most of the neutrons go into the aperture
 - dose center is about 1/10 of the aperture area or 1/3 of the aperture size
- Therefore, the maximum dose at neutron spot center would be significantly higher than the average dose
 - the hadronic shower size (~ 10cm) is indeed wider than the spot size: this broadening should help reduce dose from slow neutrons
 - but not for ionization dose (EM shower size \ll spot size)

Vitali's study in 2021

- Using Fluka for shower simulation
 - not clear what was used for the *ep* collision simulation
- estimating 10^{14} neutrons for 4 years, or 2.5×10^{13} per year ۲
- The distribution of neutrons is peaked at the center width ~ 2mrad: seems ~ OK ۲
 - The fraction of events with a neutron is unknown in this simulation

1

0.1

0.01

4040 4060 4080

4020

Summary

- Neutron dose simulation has large uncertainty on:
 - the incident angular distribution of the neutrons for the ZDC case
- We see about an order of magnitude difference between Vitaly 2021 and the ePIC study <u>https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses</u>
 - The ePIC study shows $< 10^{12}$ per year
 - Vitaly: 2.5×10^{13} : this number agrees with my order estimation
- This difference is not too striking (LHC central detector dose uncertainty in 2008: factor 5)
- But we should understand the origin
 - 1. Hadronic shower package (factor a few between Geant4 and Fluka?)
 - 2. Angular distribution and yield of neutrons
 - 3. Geometry of the detector and upstream (beam pipe thickness, material ...)
 - For the item 2, HERA data should help
 - For the item 3, see Michael Pitt's talk