PROTON ENERGY SCAN

LUISA OCCHIUTO

UNIVERSITY OF CALABRIA& INFN COSENZA

RADIATION DAMAGE

□ Because SiPMs detect single charge carriers -> radiation damage.

- □ Effect of radiation on silicon detectors -> depends on various factors:
 - type of radiation;
 - the energy of the particles;
 - the radiation dose;
 - the duration of exposure.
- □ 2 categories of radiation-induced damage: bulk damage due to loss of non-ionizing energy (NIEL) and surface damage due to loss of ionizing energy (IEL).
- Bulk damage is induced mainly by high-energy particles (protons, pions, electrons and photons) and neutrons. Defects are due to the interaction between the particles and the material lattice atoms.
- □ The Non Ionizing Energy Loss (NIEL) scaling hypothesis was introduced to compare the displacement damage of several particles.
- □ Different particles -> different interactions -> different damage.

- Radiation damage from hadronic particles at fixed temperatures.
- □ TIFPA facility in Trento : irradiation at different energies and fixed fluence, $10^9 \frac{p}{cm^2}$;
- □ For the energy scan: "solid water"*.

# Board	Energy scan (MeV)	RW3 thickness (mm)
5	138	0
6	75	88 ± 1
8	45	116 ± 1
9	25	127 ± 1
10	18	131 ± 1

*IBA Solid Plate Phantom (RW3).

XYProfile at 138 MeV

□ The hardness factor k is useful for comparing the displacement damage produced by different particles with the damage that would be produced by neutrons of 1 MeV and the same fluence.

$$\kappa = \frac{\int D(E) \phi(E) dE}{D(E_n = 1MeV) \cdot \int \phi(E) dE}.$$
(3.3)

Here $D(E_n = 1 \text{ MeV})$ is set to 95 MeVmb [AST93] to assure the independence of different calculations from the used binning of the spectra. The equivalent 1 MeV neutron fluence Φ_{eq} can be calculated by

$$\Phi_{eq} = \kappa \Phi = \kappa \int \phi(E) \, dE. \tag{3.4}$$

$$k = \frac{D_{particle}}{D_n (1 \text{ MeV } n_{eq})} = \frac{D_{particle}}{95 \text{ MeV mb}}$$

 Evaluation of the hardness k factor* from tables in:

http://rd50.web.cern.ch/ NIEL/default.html

Evaluation of:
$$\frac{\Delta I}{\Delta I(138 MeV)} \frac{1}{\varepsilon}$$

where $\Delta I = I_{irr} - I_{noirr}$ at 3V overvoltage, ε efficienciency.

□ Comparison with k factor → It tells us how the damage for protons changes, damage at 18 MeV compared to damage at 138 MeV.

Energy used: 138 MeV, 75 MeV, 45 MeV, 25 MeV, 18 MeV.

- □ Simulations -> XY plane distribution of protons.
- □ Does the proton distribution at 0mm≠ distribution at 131mm?
- **Does the degrader change the distribution?**

Expectations: at 131 mm -> wider distribution than distribution at 0 mm -> Proton scattering.

- □ Comparison of distributions in X for a narrow range of Y [-1, 1] mm.
- □ Distributions -> overlapping.

REMEMBER:

- 0 mm-> 138 MeV;
- 88 mm -> 75 MeV;
- 116 mm -> 45 MeV;
- 127 mm -> 25 MeV;
- 131 mm -> 18 MeV.

□ If we look at the central plateau, for eac distribution, in the region X = [-3,3]mm.

Fit with a pol0.

• Fit results vs degrader thickness.

y (cm)

- If we look at the central plateau, for each distribution, in the region X = [-3,3]mm.
- Fit with a pol0.

• Fit results vs degrader thickness.

Conclusion

- □ We have seen how to compare the radiation damage of our sensors with the theoretical damage curve.
- We examined the simulation of the Xy profile of the beam looking for a crucial role of the degraders in lowering the energy, looking for evidence of proton scattering in the proton distribution.
- □ We have seen that at the increasing of the energy we have no longer a monochromatic beam, so we have to take into account this in the comparison with k factor.

THANKS!