News: +3 cm downstream shift with respect the IP, O(10 cm) tolerance in aerogel disk radius

The hadron beam angle forces an expanding pipe and a off-axis dRICH bore dRICH bore should be big enough to provide clearance for the beam pipe during operations

dRICH Movement

Rolling in and out a single piece

dRICH Movement

Rolling in and out a single piece

dRICH Clearance

~ 70 cm clearance to enter the barrel

dRICH Movement

Divide into two halves as soon as out of ePIC

dRICH Movement

Divide into two halves as soon as out of ePIC

Decision pending on the maintenance plan at IP6 + dRICH acceptance study

Case 1: single dRICH volume rolling in and out along the beam pipe

Mid-flange and pipe cross-section at the parking position provide similar constraint

Running position within ePIC

Parking position for maintenance

Case 2: two dRICH halvesto be divided as soon as outside ePIC

dRICH bore could be minimized if the mid-flange is moved in front of dRICH The septum will obstruct inter-sector photon propagation.

Running position within ePIC

Extraction position

SIDIS Physics

Notes (provisional):

- physics ϕ is defined vs the electron scattering plane, i.e. is not the laboratory ϕ_{LAB}
- pseudorapidity (and physics) should be defined with respect the hadron beam, not the solenoid axis

Aerogel Wall

R_{aero} = 90 cm

(m 2000 (m 2000 (m 2000) (m 200) (m 2000) (m 200) (m 2000) (m 200)

1600

1400

1200

1000

800

600

400

200

٥Ľ

12001400160018002000220024002600280030003200

Note: pseudorapidity (and physics) is defined with respect the hadron beam, not the solenoid axis

z (mm)

dRICH Snout

Imaging @ $\eta=2.5$

Imaging @ $\eta=2.5$

Imaging @ η=3.5

Imaging @ η=3.5

Imaging @ η=1.5

Imaging @ η =1.5

dRICH Snout

dRICH Bore

eta 3.5

2.5

0

50 100 150 200

70

60

50

<u>4</u>0

20

100

90

80

60

50

40

30

20

300 350 phi (degree)

300 350 R det min (mm)

250 300 350 R det min (mm)

 $R_{bore} = 10-21 \text{ cm}$

dRICH Meeting - 14^h February 2024

dRICH Halves

dRICH Meeting - 14^h February 2024

dRICH Options

dRICH Resolution

There is some flexibility on the maximum aerogel radius: potential benefit for acceptance; important tolerance for mechanics.

The ePIC asymmetric pipe suggests an off-axis bore for the dRICH.

The maintenance at IP6 (without beam vacuum break) impose constraints on the dRICH model

- large bore: loss in pseudorapidity acceptance (unrecoverable)

- split into two halves: loss in azimuthal acceptance (mitigated by ϕ_{LAB} invariance)