

Coherent J/ψ diffractive pattern simulation with the ePIC detector

Cheuk-Ping Wong

10-23-2023

What's new

- Updated data selections
 - Use backward Ecal instead of tracking for electrons at $\eta < 1.5$
 - Added $|\eta_{J/\psi}| < 1.5$ requirement to reduce contamination from the scattered electron in J/ψ reconstruction
- Coherent $J/\psi \rightarrow \mu^+\mu^-$ event from Sartre

Simulation Setup

- Sartre
- eAu at 10x108 GeV
- 1M events
- $Q^2 \ge 1 \text{ GeV}^2$
- Forced $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$
- No background
- File locations
 - $J/\psi \rightarrow e^+e^-$ S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/Sartre/Coherent/sartre_bno nsat_Au_jpsi_ab_eAu_1.hepmc3.tree.root
 - $J/\psi \rightarrow \mu^+\mu^-$ /gpfs02/eic/jkim/JPsi/coherent/sartre_bsat_Au_jpsi_muons_1_coherent.hepmc

Data Selections and Reconstructions

Single electron selection

If the electron $\eta < -1.5$, use Ecal energy instead of momentum from tracking

J/ψ reconstruction

- |pid| = 11 or 13 (Most likely using true PID in DD4hep)
- Opposite charges cut on dielectron pair
- If the reconstructed mass is within 2 standard deviations, the e+ and e- are labeled as " J/ψ decayed" dielectrons
- No $J/\psi |\eta| < 1.5$ applied in invariant mass to keep the efficiency in separating decayed electrons and scattered electrons

Q^2

- Scattered electrons must be negatively charged
- " J/ψ decayed" electrons are excluded
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5$
- Require information of the proton beam
- Better t resolutions

Updated coherent $J/\psi \rightarrow e^+e^-$ simulations

Invariant mass

J/ψ Momentum

J/ψ Momentum

Mis-reconstruction at high momentum Mostly from tracking Track electron only J/ψ decayed e^{\pm} J/ψ decayed e^{\pm} 20Momentum_{mc} [GeV] Momentum_{rec} [GeV] EtamcVsPmc EtaReVsPRe 113290 Entries 230702 10³ Entries -0.8931 Mean x -0.9505 Mean x 18 18 Mean y 3.574 3.759 Mean v 10^{3} Std Dev x 1.322 Std Dev x 1.291 Std Dev v 3.072 Std Dev y 3.242 16 14 10² -12 10² 10 8 10 -6 10 2 -2 2 Ω 4 -6 η_{mc} η_{rec}

Combinatorial background from scattered electrons

Mis-reconstruction at high momentum Mostly from tracking

Combinatorial background from scattered electrons

Q^2 Distribution

Q^2 Distribution

Reduced mis-reconstruction at low and high Q² with the use of backward Ecal electron and $|\eta_{J/\psi}| < 1.5$ selection

t Distributions

 $1 < Q^2 < 10 \text{ GeV}^2$ $1 < Q^2 < 10 \text{ GeV}^2$ count tuno 10⁴ • MC, $h_{J/\psi}$ I<1.5 ° MC Reco. trk e + backward ECal e, $\ln_{J/w}$ I<1.5 ٥ Reco. trk e △ Reco. trk e + backward ECal e 10³ 10⁶ 10² 10^{2} 10눝 10 E F E 0.05 0.2 0.05 0.15 0.1 0.15 0.1 0.2 0 0 Itl (GeV²) Itl (GeV²)

t Resolutions

 Δt is mostly positive

t Resolutions

Dielectron channel vs dimuon channel

Invariant Mass

J/ψ momentum

Q² distribution

t distribution and resolution

0.2

Summary

Updated data selections

- Use backward Ecal energy for electrons at $\eta < 1.5$ and the $|\eta_{J/\psi}| < 1.5$ requirement improved the t reconstruction
- $|\eta_{J/\psi}| < 1.5$ does reduce statistics

Compared dielectron and dimuon channels

- Cleaner J/ψ reconstruction
- Higher J/ψ efficiency as a function of momentum
- Better Q² efficiency
- Better t resolution

To-do List

- Fast sim for backward tracking for detector2
- Modify detector setup in simulations
 - Replace ePIC solenoid with ATHENA solenoid
 - Double check with momentum resolution
 - Replace Hcals with KLM

