400 University of Glasgow

BUILDING BLOCKS OF FLAVOUR IN SMEFT

Dave Sutherland
(based on arXiv:2210.09316 and WIP w/ C. Machado, S.
Renner, B. Smith)
$25^{\text {th }}$ Jan 2024, BNL
University of Glasgow

WHAT'S A BUILDING BLOCK?

(Various Al text-to-image interpretations of the paper title)
Key point: $\operatorname{SU}(3)^{5}$ decomposition usefully organises the flavour space of a completely generic SMEFT, and simplifies the running.

HEAVY NP HAS MANY FLAVOURFUL PARAMETERS

Effects of heavy NP described by contact interactions, e.g.,

$$
\begin{array}{r}
c_{H \square}\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) \\
c_{i j}\left(H^{\dagger} i \stackrel{\leftrightarrow}{D} H\right)\left(\bar{Q}^{i} \gamma Q^{j}\right) \\
c_{i j k l}\left(\bar{Q}^{i} \gamma Q^{j}\right)\left(\bar{Q}^{k} \gamma Q^{l}\right)
\end{array}
$$

Most are flavourful: compare 2499 (3 generation) versus 76 (1 generation) real parameters in the dim. 6 B -conserving SMEFT.

We want to analyse physically meaningful subsets of these parameters.

PROBLEM: THEY RUN

Parameters mix via γ, populated by SM couplings. (Alonso, Jenkins, Manohar, and Trott 2014)

Much of it is flavourful, e.g.

Are all physically meaningful subsets mixed by running?

THE PLAN

- $S U(3)^{5}$ decomposition as a generic organising principle (Machado, Renner, and Sutherland 2023)
- Structures in the RG due to helicity (Cheung and Shen 2015)
- Structures in the RG due to flavour (Machado, Renner, and Sutherland 2023)
- Relevant directions in the IR (preliminary work)

THE SM(EFT) HAS A BROKEN SU(3) ${ }^{5}$ SYMMETRY

The SM(EFT) has a hierarchically broken
$S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d} \times S U(3)_{L} \times S U(3)_{e}$ symmetry.

$$
\begin{aligned}
\mathcal{L}= & i \bar{Q}^{i} \not D Q^{i}+i \bar{u}^{i} \not \dot{D}^{i}+[\text { sim. for } d, L, e] \\
& -\left[Y^{U}\right]_{i j} \bar{Q}^{i} \tilde{H} u^{j}+\text { h.c. }+\left[\text { sim. for } Y^{D}, Y^{E}\right] \\
& \left.+c_{i j k l}\left(\bar{Q}^{i} \gamma Q^{j}\right)\left(\bar{Q}^{k} \gamma Q^{l}\right)+\text { [other ops }\right]
\end{aligned}
$$

The kinetic terms are invariant under $Q^{i} \rightarrow U_{Q}^{i j} Q^{j}$, $u^{i} \rightarrow U_{u}^{i j} u^{j}, \ldots$.

The Yukawas break different parts of these symmetries their components are charged under $\operatorname{SU}(3)^{5}$.

The SMEFT operators are also charged under $\operatorname{SU}(3)^{5}$.

FLAVOUR DECOMPOSITION

Cf. SU(3) of ids: The SM Yukawas hierarchically break its $S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d} \times S U(3)_{L} \times S U(3)_{e}$ symmetry.

There are 20 flavour quantum numbers in total

$$
\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{F} \quad \forall F \in\{Q, u, d, L, e\}
$$

FLAVOUR DECOMPOSITION: ONE FERMION CURRENT

For $\left(H^{\dagger} i \stackrel{\leftrightarrow}{D} H\right)\left(\bar{Q}^{i} \gamma Q^{j}\right): 1_{Q} \oplus \boldsymbol{8}_{Q}$

Total lightspin (I) key: $\bullet=0, \mathbf{O}=\frac{1}{2}, \quad=1$.
Compare

$$
\eta \sim(u \bar{u}+d \bar{d}-2 s \bar{s})
$$

and

$$
c_{8,6}\left(H^{\dagger} i \stackrel{\leftrightarrow}{D} H\right)\left(\bar{u}_{L}^{i} \gamma u_{L}^{j}+\bar{c}_{L}^{i} \gamma c_{L}^{j}-2 \bar{t}_{L}^{i} \gamma t_{L}^{j}\right)
$$

PHENO IN FLAVOUR SPACE

For $\left(\bar{Q}^{i} \gamma Q^{j}\right)\left(\bar{Q}^{k} \gamma Q^{\prime}\right): 1_{Q} \oplus 1_{Q} \oplus 8_{Q} \oplus 8_{Q} \oplus 27_{Q}$

Total lightspin (I) key: $\bullet=0,0=\frac{1}{2}, \boldsymbol{\bullet}=1, \mathrm{a}=\frac{3}{2}, \quad=2$.

PHENO IN FLAVOUR SPACE

Flavour universal (SU(3) ${ }^{5}$ symmetric)

Total lightspin (I) key: $\bullet=0, O=\frac{1}{2}, \square=1, \square=\frac{3}{2}, \quad=2$.

PHENO IN FLAVOUR SPACE

SU(2) ${ }^{5}$ symmetric

Total lightspin (I) key: $\bullet=0, O=\frac{1}{2}, \square=1, \square=\frac{3}{2}, \quad=2$.

PHENO IN FLAVOUR SPACE

Flavour conserving

Total lightspin (I) key: $\bullet=0, O=\frac{1}{2}, \square=1, \square=\frac{3}{2}, \quad=2$.

PHENO IN FLAVOUR SPACE

$\Delta F=2$, e.g. Kaon mixing

Total lightspin (I) key: $\bullet=0, O=\frac{1}{2}, \square=1, \square=\frac{3}{2}, \quad=2$.

SU(3) ${ }^{5}$ NATURALLY CLASSIFIES COEFFICIENTS

Quark Lepton	$\begin{gathered} \text { (1) } \\ d_{\{Q, u, d\}}=1 \end{gathered}$	$d_{\{Q, u\}}>1,\left\{\mathcal{I}_{3}, \mathcal{Y}\right\}_{\{Q, u\}}=0$	(3) $\left(\mathcal{I}^{2}+\frac{3}{4} \mathcal{Y}^{2}\right)_{\{Q, u, d\}}=1$	(4) $\left(\mathcal{I}^{2}+\frac{3}{4} \mathcal{Y}^{2}\right)_{\{Q, u, d\}}>1$
(A) $d_{\{L, e\}}=1$	Higgs, EW, ...	top, MFV FCNCs	non-MFV FCNCs	e.g. meson mixing
$d_{\{L, e\}}>1,\left\{\widetilde{\mathcal{I}}_{3}, \mathcal{Y}\right\}_{\{L, e\}}=0$	LFUV (quark flavour conserved) e.g. LFUV in Z decays	LFUV in MFV FCNCs	$\begin{gathered} \text { LFUV in non-MFV FCNCs } \\ \text { e.g. } R_{K} \end{gathered}$	-
$\begin{gathered} \text { (C) } \\ \left(\mathcal{I}^{2}+\frac{3}{4} \mathcal{Y}^{2}\right)_{\{L, e\}}=1 \end{gathered}$	LFV (quark flavour conserved) e.g. $\mu \rightarrow 3 e, H \rightarrow \tau \mu$	LFV in MFV FCNCs	LFV in non-MFV FCNCs e.g. $B \rightarrow K \mu e$	-
(D) $\left(\mathcal{I}^{2}+\frac{3}{4} \mathcal{Y}^{2}\right)_{\{L, e\}}>1$	e.g. muonium oscillations, $\tau^{+} \rightarrow \mu^{-} e^{+} e^{+}$	-	-	-

(Machado, Renner, and Sutherland 2023)

MFV

For Q charged Wilson coeffs

BLOCKS FROM HELICITY

(GENERALISED) UNITARITY

Consider the Passarino-Veltman decomposition of a one loop diagram, e.g.

It contains UV and IR divergences. Anomalous dimensions are encoded in the bs.

CUTTING THROUGH THE NOISE

"Cut" both sides by placing two propagators on-shell

Take all possible cuts, obtain a set of linear equations for $\left\{b_{i}, c_{i}, d_{i}\right\}$.

For many SMEFT amplitudes, the LHS vanishes for all cuts, and therefore $b_{i}=c_{i}=d_{i}=0$.

For how to calculate EFT RGs onshell, see (Caron-Huot and Wilhelm 2016) , (Jiang, Ma, and Shu 2021), (Baratella, Fernandez, and Pomarol 2020), (Elias Miró, Ingoldby, and Riembau 2020) , ...

HELICITY SELECTION RULES

LHSs vanish because tree-level SM ultra-helicity violating amplitudes vanish, e.g., $\mathcal{A}_{\text {SM }}\left(g^{+} g^{+} g^{+} g^{-}\right)$. (Cheung and Shen 2015)

$$
\binom{n_{j}}{\sum h_{j}}+\binom{-4}{0}+\binom{n_{S M}}{\sum h_{S M}}=\binom{n_{i}}{\sum h_{i}} \begin{gathered}
{[\# \text { legs }]} \\
{[\text { Tot. helicity }]}
\end{gathered}
$$

$\left|\sum h_{S M}\right| \leq n_{S M}-4$ at tree level with the exception of $\mathcal{A}\left(Q^{+} u^{+} Q^{+} d^{+}\right) \propto Y_{u} \times Y_{d}$

A "CAUSAL" RG

(Alonso, Jenkins, and Manohar 2014; Cheung and Shen 2015)
$\sum h$
$3 \uparrow F^{3}$
Some operators generated at tree level by weakly coupled NP (Craig, Jiang, Li, and Sutherland 2020)

FOCUS ON THE $(4,0)$ BLOCK

Nothing runs into it, except a few $(4,2)$ operators, but that's suppressed by $Y_{u} \times Y_{d}$. By the same token, drop $\mathcal{O}_{\text {Hud }}$ and $\mathcal{O}_{\text {Ledo }}$.

The block contains 1460 of 2499 parameters, all tree-level generated.

BLOCKS FROM FLAVOUR

THE CURRENT-CURRENT OPERATORS

All considered operators are the product of two currents

Class	Example	Notation
$\phi^{4} D^{2}$	$\left(H^{\dagger} i \overleftrightarrow{D} H\right)^{2},\left(H^{\dagger} i \overleftrightarrow{D} \sigma^{\prime} H\right)^{2}$	\ddots
$\psi \bar{\psi} \phi^{2} D$	$\left(H^{\dagger} i \overleftrightarrow{D} H\right)\left(\bar{U}_{R} \gamma u_{R}\right),\left(H^{\dagger} i \overleftrightarrow{D} \sigma^{\prime} H\right)\left(\bar{L}_{L} \gamma \sigma^{\prime} L_{L}\right)$	\ddots
$\psi^{2} \bar{\psi}^{2}$	$\left(\bar{Q}_{L} \gamma \lambda^{A} Q_{L}\right)\left(\bar{u}_{R} \gamma \lambda^{A} u_{R}\right),\left(\bar{L}_{L} \gamma L_{L}\right)^{2}$	\ddots

THE FOUR TYPES OF RUNNING: IR FINITE GAUGE

It is flavourful - it lifts flavour universal pieces relative to non-universal ones.

It can change operator type.

THE FOUR TYPES OF RUNNING: IR FINITE YUKAWA

It is flavourful - it affects the third generation more than others.

It can change operator type.

THE FOUR TYPES OF RUNNING: IR DIVERGENT YUKAWA

It is flavourful - it affects third generation more than others.

It cannot change operator type.

THE FOUR TYPES OF RUNNING: IR DIVERGENT GAUGE

It is flavourless. It often vanishes due to non-renormalisation of number current.

It cannot change operator type (other than mixing different gauge structures, e.g. $\left.\mathcal{O}_{u d}^{(1)} \leftrightarrow \mathcal{O}_{u d}^{(8)}\right)$.

THE FOUR TYPES OF RUNNING: SUMMARY

γ contribution	Cut topology	Flavour action
IR-finite gauge	\ddots	亿

(Also a couple flavourless Higgs quartic interactions.)

RUNNING

Yukawa charges dictate running in different directions. For Q charged Wilson coeffs

WHY GAUGE+ y_{t} IS A GOOD APPROXIMATION

In the up basis, the Yukawas' flavour $\quad y_{b}^{2} \sin \theta_{23}$ violation is small.
Instead, flavour violation is through 'diagonal' y_{t} running + matching.

$\bar{Q}^{i} \gamma\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)^{i j} Q^{j} \xrightarrow{\text { Run }} \bar{Q}^{i} \gamma\left(\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)^{i j} Q^{j} \xrightarrow[Q=\binom{u}{v d}]{\text { Match }}(b-a)\left(V_{3 i}^{\mathrm{CKM}}\right)^{*} V_{3 j}^{\mathrm{CKM}} \bar{d}^{i} \gamma d^{j}$
y_{t} important: comparable to g_{s} and appears frequently

$$
\alpha_{t}\left(m_{z}\right)=\frac{y_{t}^{2}}{4 \pi} \approx 0.08 ; \quad \alpha_{s}\left(m_{z}\right)=\frac{g_{s}^{2}}{4 \pi} \approx 0.12
$$

g_{s} IS LESS IMPORTANT THAN y_{t}

g_{s} appears less frequently than y_{t} as it requires non-trivial colour structures (other than δ_{B}^{A})

Because $\operatorname{Tr}[T]=0$

Because number current is conserved

FLAVOUR BLOCKS: GAUGE AND y_{t} APPROX.

In DSixTools's basis, the matrix is sparse and messy.

This is not a complaint about DSixTools, which has been very useful for this study! (Fuentes-Martin,

FLAVOUR BLOCKS: GAUGE AND y_{t} APPROX.

SU(3) ${ }^{5}$ decomposition block diagonalises sparse 1460 by 1460 anomalous dim. matrix of current-current operators.

(Blocks from conserved charges: $\left.\left\{\mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{Q, u\}},\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{d, L, e\}}\right)$

FLAVOUR BLOCKS: NO APPROX.

SU(3) ${ }^{5}$ decomposition block diagonalises sparse 1460 by 1460 anomalous dim. matrix of current-current operators.

(Blocks from conserved charges: $\mathcal{I}_{3, L}+\mathcal{I}_{3, e}, \mathcal{Y}_{L}+\mathcal{Y}_{e}$)

IR RELEVANT DIRECTIONS

MIXING IS A BASIS ARTEFACT

Diagonalise the anomalous dimension matrix
$\frac{\mathrm{d} \hat{c}_{i}}{\mathrm{~d} \ln \mu}=\frac{\hat{\gamma}_{i} \hat{i}_{i}}{16 \pi^{2}} \Longrightarrow \mathcal{A}_{4 \text {-pt }} \sim \hat{c}_{i}^{(6)}(E)\left(\frac{E}{M}\right)^{2}=\hat{c}_{i}^{(6)}(M)\left(\frac{E}{M}\right)^{2+\frac{\hat{\gamma}_{i}}{16 \pi^{2}}}$
(To account for running of SM coeffs, $\gamma \rightarrow \frac{\int \gamma(\mu) \mathrm{d} \ln \mu}{\int \mathrm{ln} \mu}$.)

OPERATOR SPECTRUM IN GAUGE $+y_{t}$ APPROX. (PRELIMINARY)

Diagonalise the 61×61 block. (The biggest block, mixing flavour universal and $3^{\text {rd }}$ gen. operators.)

Contains $533 y_{t}^{2}$ entries, $138 g_{s}^{2}$ entries.

Individual entries $\frac{g_{5}^{2}\left(m_{z}\right)}{16 \pi^{2}}=0.01$ add up to $\pm \mathrm{O}$ (0.1) eigenvalues.

Directions double/halve from 50 TeV to 174 GeV .

OPERATOR SPECTRUM IN GAUGE $+y_{t}$ APPROX. (PRELIMINARY)

Most IR irrelevant: Dimension 6.12
$\mathcal{O} \approx 0.94 \mathcal{O}_{\text {Нд }}+0.23 \mathcal{O}_{\text {Нロ }}-$ $0.19\left(\mathcal{O}_{\text {ни }}\right)_{8,6}+\ldots$

Most IR relevant: Dimension 5.88

SUMMARY

An $\operatorname{SU}(3)^{5}$ decomposition usefully organises the flavour parameter space of a completely generic SMEFT.

It contains flavour Ansätze within identifable subsets.
It simplifies RG effects, to the point that they are (semi)analytically soluble.

The RG of the SMEFT is not a black box, but a beautifully simple and flavourful machine!

THANK YOU

BACKUP

FLAVOUR BLOCKS: GAUGE AND y_{t} APPROX.

Conserved: $\left\{\mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{Q, u\}},\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{d, L, e\}}$

Block size	61	17	13	12	8	2	1
Multiplicity	1	7	8	15	8	217	498

FLAVOUR BLOCKS: NO APPROX.

Lepton number conserved: $\mathcal{I}_{3, L}+\mathcal{I}_{3, e}, \mathcal{Y}_{L}+\mathcal{Y}_{e}$

Block size	932	81	4	3
Multiplicity	1	6	6	6

