

BUILDING BLOCKS OF FLAVOUR IN SMEFT

Dave Sutherland (based on *arXiv:2210.09316* and WIP w/ C. Machado, S. Renner, B. Smith) 25th Jan 2024, BNL

University of Glasgow

WHAT'S A BUILDING BLOCK?

(Various AI text-to-image interpretations of the paper title)

Key point: *SU*(3)⁵ decomposition usefully organises the flavour space of a *completely generic* SMEFT, and simplifies the running.

Effects of heavy NP described by contact interactions, e.g.,

$$C_{H\Box} (H^{\dagger}H) \Box (H^{\dagger}H)$$
$$C_{ij} (H^{\dagger}i\overset{\leftrightarrow}{D}H) (\overline{Q}^{i}\gamma Q^{j})$$
$$C_{ijkl} (\overline{Q}^{i}\gamma Q^{j}) (\overline{Q}^{k}\gamma Q^{l})$$

Most are flavourful: compare 2499 (3 generation) versus 76 (1 generation) real parameters in the dim. 6 B-conserving SMEFT.

We want to analyse physically meaningful subsets of these parameters.

PROBLEM: THEY RUN

Parameters mix via γ , populated by SM couplings. (Alonso, Jenkins, Manohar, and Trott 2014)

Much of it is flavourful, e.g.

Are all physically meaningful subsets mixed by running?

- *SU*(3)⁵ decomposition as a generic organising principle (Machado, Renner, and Sutherland 2023)
- Structures in the RG due to helicity (Cheung and Shen 2015)
- Structures in the RG due to flavour (Machado, Renner, and Sutherland 2023)
- · Relevant directions in the IR (preliminary work)

The SM(EFT) has a hierarchically broken $SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$ symmetry.

$$\mathcal{L} = i\overline{Q}^{i} \not{D} Q^{i} + i\overline{u}^{i} \not{D} u^{i} + [\text{sim. for } d, L, e] - [Y^{U}]_{ij} \overline{Q}^{i} \overleftarrow{H} u^{j} + \text{h.c.} + [\text{sim. for } Y^{D}, Y^{E}] + c_{ijkl} \left(\overline{Q}^{i} \gamma Q^{j} \right) \left(\overline{Q}^{k} \gamma Q^{l} \right) + [\text{other ops}]$$

The kinetic terms are invariant under $Q^i \rightarrow U_Q^{ij}Q^j$, $u^i \rightarrow U_u^{ij}u^j$,

The Yukawas break different parts of these symmetries – their components are *charged* under $SU(3)^5$.

The SMEFT operators are also charged under $SU(3)^5$.

Cf. SU(3) of uds: The SM Yukawas hierarchically break its SU(3)_Q × SU(3)_u × SU(3)_d × SU(3)_L × SU(3)_e symmetry.

There are 20 flavour quantum numbers in total

 $\{d, \mathcal{I}, \mathcal{I}_3, \mathcal{Y}\}_F \qquad \forall F \in \{Q, u, d, L, e\}$

For
$$\left(H^{\dagger}i\overset{\leftrightarrow}{D}H\right)\left(\overline{Q}^{i}\gamma Q^{j}\right)$$
: $\mathbf{1}_{Q}\oplus\mathbf{8}_{Q}$

Total lightspin (\mathcal{I}) key: $\bullet = 0, O = \frac{1}{2}, \bullet = 1$.

Compare

$$\eta \sim \left(u\overline{u} + d\overline{d} - 2s\overline{s} \right)$$

and

$$c_{8,6}\left(H^{\dagger}i\overset{\leftrightarrow}{D}H\right)\left(\overline{u}_{L}^{i}\gamma u_{L}^{j}+\overline{c}_{L}^{i}\gamma c_{L}^{j}-2\overline{t}_{L}^{i}\gamma t_{L}^{j}\right)$$

PHENO IN FLAVOUR SPACE

Total lightspin (\mathcal{I}) key: $\bullet = 0, O = \frac{1}{2}, \blacksquare = 1, \Box = \frac{3}{2}, \bigstar = 2.$ 8

PHENO IN FLAVOUR SPACE

Quark	1	2	3	4
Lepton	$d_{\{Q,u,d\}} = 1$	$d_{\{Q,u\}}>1,\;\{\mathcal{I}_3,\mathcal{Y}\}_{\{Q,u\}}=0$	$(I^2 + \frac{3}{4}Y^2)_{\{Q,u,d\}} = 1$	$(\mathcal{I}^2 + \frac{3}{4}\mathcal{Y}^2)_{\{Q,u,d\}} > 1$
(A)				
$d_{\{L,e\}} = 1$	Higgs, EW,	top, MFV FCNCs	non-MFV FCNCs	e.g. meson mixing
B	LFUV (quark flavour conserved)	LFUV in MFV FCNCs	LFUV in non-MFV FCNCs	-
$d_{\{L,e\}} > 1, \{ \widetilde{I}_3, \mathcal{Y} \}_{\{L,e\}} = 0$	e.g. LFUV in Z decays		e.g. R _K	
(C)	LFV (quark flavour conserved)	LFV in MFV FCNCs	LFV in non-MFV FCNCs	-
$(I^2 + \frac{3}{4}Y^2)_{\{L,e\}} = 1$	e.g. $\mu \rightarrow 3e, H \rightarrow \tau \mu$		e.g. $B \rightarrow K \mu e$	
D	e.g. muonium oscillations,	-	-	-
$(I^2 + \frac{3}{4}Y^2)_{\{L,e\}} > 1$	$\tau^+ \rightarrow \mu^- e^+ e^+$			

(Machado, Renner, and Sutherland 2023)

For Q charged Wilson coeffs 27-plet Octet Singlet $y_b^2 \sin \theta_{23}$ $y_b^2 e^{i\delta} \sin \theta_{13}$ $\stackrel{y_{\rm S}^2 \sin \theta_{12}}{\longrightarrow} \mathcal{I}_3$ y_c^2 \mathcal{I}_3 $\rightarrow \mathcal{I}_3$ $y_{\rm s}^2 \sin \theta_{12}$ $y_c^2 y_t^2$ $y_b^2 e^{-i\delta} \sin \theta_{13}$ $y_{\rm b}^2 \sin \theta_{23}$ $V_{\rm CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{-c} & c_{-c} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{-c}e^{i\delta} & 0 & c_{-c} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (Working in up basis.)

BLOCKS FROM HELICITY

Consider the Passarino-Veltman decomposition of a one loop diagram, e.g.

It contains UV and IR divergences. Anomalous dimensions are encoded in the *b*s.

"Cut" both sides by placing two propagators on-shell

Take all possible cuts, obtain a set of linear equations for $\{b_i, c_i, d_i\}$.

For many SMEFT amplitudes, the LHS vanishes for all cuts, and therefore $b_i = c_i = d_i = 0$.

For how to calculate EFT RGs onshell, see (Caron-Huot and Wilhelm 2016), (Jiang, Ma, and Shu 2021), (Baratella, Fernandez, and Pomarol 2020), (Elias Miró, Ingoldby, and Riembau 2020), ...

LHSs vanish because tree-level SM ultra-helicity violating amplitudes vanish, e.g., $A_{SM}(g^+g^+g^+g^-)$. (Cheung and Shen 2015)

 $|\sum h_{SM}| \le n_{SM} - 4$ at tree level with the exception of $\mathcal{A}(Q^+u^+Q^+d^+) \propto Y_u \times Y_d$

A "CAUSAL" RG

(Alonso, Jenkins, and Manohar 2014; Cheung and Shen 2015)

19

Focus on the (4,0) block

Nothing runs into it, except a few (4,2) operators, but that's suppressed by $Y_u \times Y_d$. By the same token, drop \mathcal{O}_{Hud} and \mathcal{O}_{LedQ} .

The block contains 1460 of 2499 parameters, all tree-level generated.

BLOCKS FROM FLAVOUR

All considered operators are the product of two currents				
Class	Example	Notation		
$\phi^4 D^2$	$(H^{\dagger}i\overleftrightarrow{D}H)^{2}, (H^{\dagger}i\overleftrightarrow{D}\sigma^{I}H)^{2}$	Ì Ø Ø		
$\psi ar{\psi} \phi^2 {\sf D}$	$(H^{\dagger}i\overleftrightarrow{D}H)(\overline{u}_{R}\gamma u_{R}), (H^{\dagger}i\overleftrightarrow{D}\sigma^{I}H)(\overline{L}_{L}\gamma\sigma^{I}L_{L})$			
$\psi^2 ar \psi^2$	$(\overline{Q}_L\gamma\lambda^A Q_L)(\overline{u}_R\gamma\lambda^A u_R),(\overline{L}_L\gamma L_L)^2$			

THE FOUR TYPES OF RUNNING: IR FINITE GAUGE

It is *flavourful* — it lifts flavour universal pieces relative to non-universal ones.

It can change operator type.

THE FOUR TYPES OF RUNNING: IR FINITE YUKAWA

It is *flavourful* — it affects the third generation more than others.

It can change operator type.

THE FOUR TYPES OF RUNNING: IR DIVERGENT YUKAWA

It is *flavourful* — it affects third generation more than others.

It cannot change operator type.

THE FOUR TYPES OF RUNNING: IR DIVERGENT GAUGE

It is *flavourless*. It often vanishes due to non-renormalisation of number current.

It cannot change operator type (other than mixing different gauge structures, e.g. $\mathcal{O}_{ud}^{(1)} \leftrightarrow \mathcal{O}_{ud}^{(8)}$).

γ contribution	Cut topology	Flavour action	
IR-finite gauge		singlets \leftrightarrow singlets	
IR-finite Yukawa		mixes irreps	
IR-divergent gauge		blind	
	and collinear		
IR-divergent Yukawa	collinear	mixes irreps	

(Also a couple flavourless Higgs quartic interactions.)

RUNNING

Yukawa charges dictate running in different directions. For *Q* charged Wilson coeffs

WHY GAUGE+ y_t IS A GOOD APPROXIMATION

In the up basis, the Yukawas' flavour violation is small.

Instead, flavour violation is through 'diagonal' y_t running + matching.

$$\overline{Q}^{i}_{\gamma} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{ij} Q^{j} \xrightarrow{\operatorname{Run}} \overline{Q}^{i}_{\gamma} \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}^{ij} Q^{j} \xrightarrow{\operatorname{Match}}_{Q=\binom{u}{\forall d}} (b-a)(V_{3i}^{\operatorname{CKM}})^{*} V_{3j}^{\operatorname{CKM}} \overline{d}^{i}_{\gamma} d^{j}_{\gamma} Q^{j}_{\gamma}$$

 $y_b^2 \sin \theta_{23}$

 $V_b^2 \sin \theta_{13}$

 $y_s^2 \sin \theta_{12}$

 y_t important: comparable to g_s and appears frequently

$$\alpha_t(m_Z) = \frac{y_t^2}{4\pi} \approx 0.08$$
; $\alpha_s(m_Z) = \frac{g_s^2}{4\pi} \approx 0.12$.

 g_s appears less frequently than y_t as it requires non-trivial colour structures (other than δ_B^A)

FLAVOUR BLOCKS: GAUGE AND y_t APPROX.

In *DSixTools*'s basis, the matrix is sparse and messy.

This is not a complaint about *DSixTools*, which has been very useful for this study! (Fuentes-Martin, Ruiz-Femenia, Vicente, and Virto 2021) *SU*(3)⁵ decomposition block diagonalises sparse 1460 by 1460 anomalous dim. matrix of current-current operators.

(Blocks from conserved charges: $\{\mathcal{I}, \mathcal{I}_3, \mathcal{Y}\}_{\{Q,u\}}, \{d, \mathcal{I}, \mathcal{I}_3, \mathcal{Y}\}_{\{d, L, e\}}$)

SU(3)⁵ decomposition block diagonalises sparse 1460 by 1460 anomalous dim. matrix of current-current operators.

(Blocks from conserved charges: $\mathcal{I}_{3,L} + \mathcal{I}_{3,e}, \mathcal{Y}_L + \mathcal{Y}_e$)

IR RELEVANT DIRECTIONS

MIXING IS A BASIS ARTEFACT

Diagonalise the anomalous dimension matrix

$$\frac{\mathrm{d}\hat{c}_i}{\mathrm{d}\ln\mu} = \frac{\hat{\gamma}_i\hat{c}_i}{16\pi^2} \implies \mathcal{A}_{4\text{-pt}} \sim \hat{c}_i^{(6)}(E) \left(\frac{E}{M}\right)^2 = \hat{c}_i^{(6)}(M) \left(\frac{E}{M}\right)^{2+\frac{\hat{\gamma}_i}{16\pi^2}}$$

(To account for running of SM coeffs, $\gamma \rightarrow \frac{\int \gamma(\mu) d \ln \mu}{\int d \ln \mu}$.)

OPERATOR SPECTRUM IN GAUGE+ y_t APPROX. (PRELIMINARY)

Diagonalise the 61×61 block. (The biggest block, mixing flavour universal and 3rd gen. operators.)

Contains 533 y_t^2 entries, 138 g_s^2 entries.

Individual entries $\frac{g_s^2(m_Z)}{16\pi^2} = 0.01$ add up to $\pm O(0.1)$ eigenvalues.

Directions double/halve from 50 TeV to 174 GeV.

OPERATOR SPECTRUM IN GAUGE+ y_t APPROX. (PRELIMINARY)

Most IR irrelevant: Dimension 6.12 $\mathcal{O} \approx 0.94\mathcal{O}_{HD} + 0.23\mathcal{O}_{H\Box} - 0.19(\mathcal{O}_{Hu})_{8.6} + \dots$

- An *SU*(3)⁵ decomposition usefully organises the flavour parameter space of a *completely generic* SMEFT.
- It contains flavour Ansätze within identifable subsets.
- It simplifies RG effects, to the point that they are (semi)analytically soluble.
- The RG of the SMEFT is not a black box, but a beautifully simple and flavourful machine!

THANK YOU

BACKUP

Conserved: ${\mathcal{I}, \mathcal{I}_3, \mathcal{Y}}_{Q,u}$, ${d, \mathcal{I}, \mathcal{I}_3, \mathcal{Y}}_{d,L,e}$

Lepton number conserved: $\mathcal{I}_{3,L} + \mathcal{I}_{3,e}, \mathcal{Y}_L + \mathcal{Y}_e$

