

Tommaso Isidori - Nov 8th 2023

the Vesper facility

High rate Electron Beam

Energy: 60 - 220 MeV Pulse Rep Frequency (on DUT): 0.8 - 5Hz **Pulse structure:** 1 - 3000 bunches Pulse duration: 0 - 4.5 mus Frequency: 3GHz frequency (15'000 bunches/5mus) **Bunch population:** ~ 4170 electrons (~ 30ps)

EIC polarimetry meeting - November 8th 2023

VESPER (Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments

Supports for in-beam alignment

Control room ~ 20 m

Low radiation around the setup can be used for hosting PSU and DAQ

http://vesper.web.cern.ch/

Previous readout designed used to prove single particle counting capabilities at Medical facilities

LGAD

intrinsic gain = 5-20 thickness = 50 micron pixel active area = 2.9×0.5 mm2 time resolution ~ 50ps signal rise time ~ 600 ps signal width = 5 - 10 ns

pulse repetition frequency of 200 Hz

data smoothing:

average of the data from 0.5 to 1.5 ns before every pulse for each one of the waveforms. data filtering:

remove from the data the high frequency fluctuations, reducing the uncertainty on the threshold crossing definition Cluster finder algorithm:

Select the isolated candidate particles

Constant Fraction Discrimination:

Offline algorithms to correct the ToA reconstruction

Previous readout designed used to prove single particle counting capabilities at Medical facilities

Timing detector response calibrated using medical lon chamber

Performance of a low gain avalanche detector in a medical linac and characterisation of the beam profile

New boards are optimized for fast response (sacrificing some time resolution)

N.Minafra, Test Platform for Automated Scan of Multiple Sensors

EIC polarimetry meeting - November 8th 2023

Reference detector: thin LGADS for CMS ETL

- Thickness ~150 um (tot)
- linearity up to 10 MIPs and for high rates (>200MHz)
- Improved single particle ID
- Time resolution < 50ps up to 1.5×10^{15}

Results with new boards

Proton beam at the AIC144 cyclotron

- 60 MeV protons (58 MeV in treatment room)
- Used to treat ocular melanoma
- Intensity up to 100 Gy/s.
- Intensity for treatment: 0.005 Gy/s–0.5 Gy/s
- 4x10⁶ 4x10⁸ protons/sec
- Nominal pulse structure RF=26.26 MHz

Thin LGAD

- Pixels 1.3mm x 1.3 mm
- Sensors biased to 180 or 200V
- Gain of ~20
- Short pulses ~ 2.5ns
- Fast rise time allowing precise time of arrival of ~ 50 ps
- Improved detectors
- Improved cluster finding algorithms

Fast timing for proton therapy

Machine Learning for Analysis of Fast Particle Detector Data for Proton Therapy Application

Simple algorithm

EIC polarimetry meeting - November 8th 2023

Cluster identification algorithm

KU Custom readout board (N.Minafra)

EIC polarimetry meeting - November 8th 2023

KU Custom readout board (N.Minafra)

90 mm

• 2 stages (transimpedance) amplification chain

• Discrete components for easy simulation/customization of the performance

• Holed design for reduced material budget

Baseline pCVD detector

JLAB Poli-crystal CVD

- Good radiation resistance
- CCE quickly deteriorates with irradiation (~ 10¹⁴ neq)
- Pulses width ~ 5 10 ns
- To be tested at high rate and electron beams

6.583 m¹

Si 3D trenches detector

- Pixels ~ 55 mum x 55 mum
- Sensors biased down to -150V
- Very short pulses < 1 ns
- Very promising radiation resistance (2.5 x 10¹⁶ 1MeV n_{eq} cm⁻²)

Innovative silicon pixel sensors for a 4D VErtex LOcator detector for the LHCb high luminosity upgrade

3D synthetic diamond

А Diamond Resistive Carbon

Elementary cell

в Signal [mV]

Tested @ PSI with pion beam

- p_π = 270 MeV/c
- Tot active area 1.5mm x 1.5mm
- Pixel pitch 55 μ m × 55 μ m (or 100 mum x 160 mum)
- Bias voltage: -100 to +125

Fabrication and Characterisation of 3D Diamond Pixel Detectors With Timing Capabilities

EIC polarimetry meeting - November 8th 2023

11

Summary and Beam plan

- 2 days of High rate tests at the CLEAR facility scheduled for Nov 13th -Nov 14th
- Beam parameters to be agreed with the facility team

- Tests results could be of interests for the EIC Compton polarimetry community
- The optimized readout design and reconstruction algorithms can help in the development of the polarimeter

Todo list

- Interests in testing 3D Si with columnar geometry
- Interest in testing AC-LGADs
- Few additional tests at high rate facilities scheduled for the end of 2023

• Pool of timing detector with promising (spatial and timing) performance to be tested with high rate electron beam • Sensors choice criteria: radiation hardness, fast signal integration, optimal space resolution, segmented structure

