

ePIC Performance on coherent J/ψ diffractive pattern

Cheuk-Ping Wong

10-30-2023

Last update

Big difference in J/ψ efficiency between dimuon and dielectron channels

J/ψ efficiency with different selections

J/ψ efficiency with different selections

J/ψ efficiency with different selections

t resolution

- Using EMC for backward electron reduces *J*/ψ efficiency but improves the t resolution
- The $\eta_{J/\psi}$ requirement further improves the t resolution

Modifying ePIC central detector

Changes of the ePIC setup

- Default: Brycecanyon + MPGD, silicon thickness=40um, B=1.7 T
- Modification of the silicon thickness in the backward tracker
 - 5um : lower than 5um may not work in the simulation. Possibly due to step size in Geant4.
 - 100um : Sanity check
- Magnetic field

I had a hard time with the ATHENA solenoid setup. Eicrecon does not know how to do track reconstruction with a different field map.

• B=3 T

Scaled the ePIC magnetic field by a constant. I planned to scale the B=1.7T to 2T, but I made a typo in the scale factor...

Changed the epic solenoid to ATHENA solenoid dimension (not the geometry)

Momentum resolution with the default ePIC setup

Brycecanyon vs Craterlake

We are using nightly-build: Brycecanyon+MPGD

- What might change the performance?
- Si Negative lever arm reduced: disk ED4 moved from -115cm \rightarrow -105cm (disk ED3 also moved)
- Additional MPGD layers in endcaps
- Some services changes \rightarrow less material in barrel (L2 support gone)

Momentum resolution of ePIC by Steven Maple (cyan line) https://indico.bnl.gov/event/20126/contributions/78819/attachments/48723/82854/CraterlakeValidationPlots_2023_07_20.pdf

Backward muon momentum resolutions

Barrel muon momentum resolution

Forward muon momentum resolutions

t distributions and resolutions

Summary

- Using EMC for backward electron reduces J/ψ efficiency but improves the t resolution
- There's no significant improvement with the use of thinner silicon wafer
- A stronger magnetic field improves the t resolutions at small t

To-do list

- Steer away from the epic nightly-build
- Fix the scaling factor of the magnetic field
- Reduce electronics/supporting structure thickness in the backward tracker
- Play around backward tracker location
- Ask about ePIC muID performance / KEK KLM performance

Backup

Simulation Setup

Sartre

- eAu at 18x110 GeV
- $Q^2 \ge 1 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

Data Selections and Reconstructions

Single electron selection

If the electron $\eta < -1.5$, use Ecal energy instead of momentum from tracking

J/ψ reconstruction

- |pid| = 11
- Opposite charges cut on dilepton pair
- If the reconstructed mass is within 2 standard deviations, the e+ and e- are labeled as " J/ψ decayed" dielectrons

Q^2

- Scattered electrons must be negatively charged
- " J/ψ decayed" electrons are excluded
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5$
- Require information of the proton beam
- Better t resolutions

