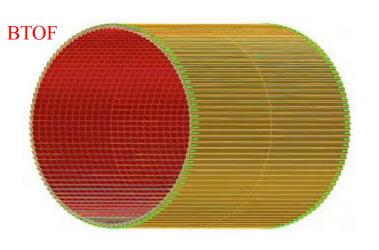
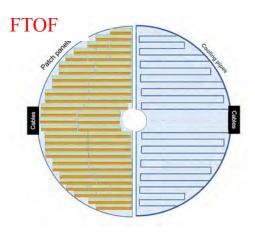
Discussion about next HPK productions for EIC

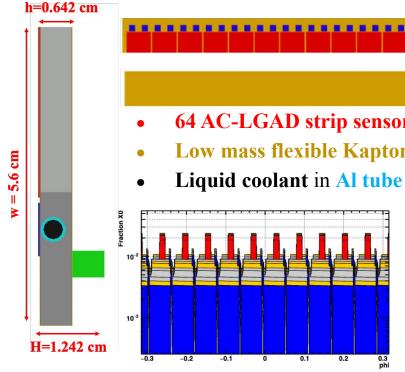

Koji, Artur, Zhenyu


11/1/2023

Early Summary

- By CD2/3 review (10/2024), the EIC detector design should be 90% final (70-80% is not ideal but acceptable).
- Encouraging results from the sensors from the first HPK production.
- Next HPK production(s), ideally tested in Spring 2024 focus on
 - Improve timing resolution for strip sensor, and spatial resolution under the metal for pad sensors
 - Produce large sensors in preparation for CD2/3 (module prototyping, cost/yield estimates)
- Question: schedule/cost of such productions, cost for construction

AC-LGAD Detectors for ePIC



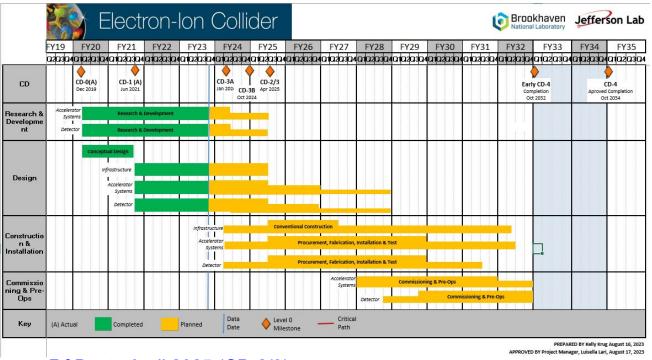
	Area (m²)	Channel size (mm²)	# of Channels	Timing Resolution	Spatial resolution	Material budget
Barrel TOF	10	0.5*10	2.4M	35 ps	30um	0.01 X ₀
Forward TOF	1.4	0.5*0.5	5.6M	25 ps	30um	$0.025 \; \text{X}_0$
B0 tracker	0.07	0.5*0.5	0.28M	30 ps	20 um	$0.05 X_0$
RPs/OMD	0.14/0.08	0.5*0.5	0.56M/0.32M	30 ps	30um	no strict req.
the design matures, and we will continue to explore common designs for these detectors where possible to reduce cost and						

ePIC BTOF Detector Module Conceptual Design

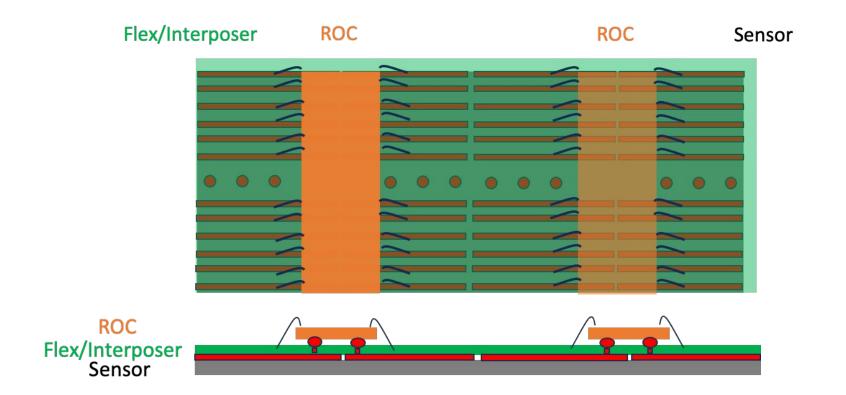
- **64 AC-LGAD strip sensors**, each 3.2*4 cm² read out by **2 ASICs**
- Low mass flexible Kapton PCB distributes power and I/O signals from connector
- Liquid coolant in Al tube embedded in CF light-weight structure for heat removal

144 modules, each with 2 readout boards with 2 LV+HV cables, 2 DAQ fiber, and 1 cooling line

Power consumption: ~4 kW (2.4kW for ASIC, 1 kW for DC-DC, 0.6kW for sensors+cable)

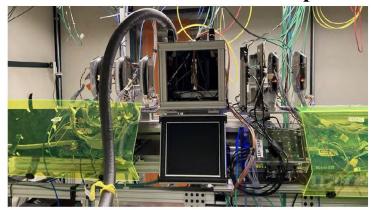

Total weight: ~70 kG

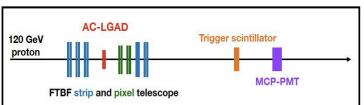
STAR IST



EIC Project Schedule

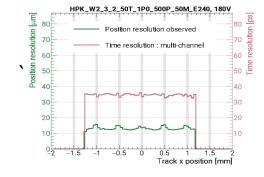
- R&D to April 2025 (CD-2/3)
- Design to October 2028
- Construction & Installation to April 2031
- Commissioning & Pre-Ops to October 2032

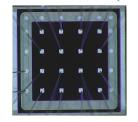


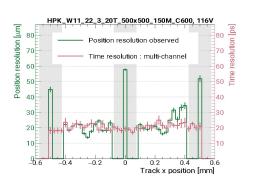

AC-LGAD Sensor R&D

Sensor

- Sensors with different configurations produced by BNL-IO and Hamamatsu, and tested with 120GeV protons
- Prototype strip sensors with ~34 ps time resolution and 12-15 um spatial resolution for BToF.
- Prototype pixel sensors with ~ 20 ps time resolution and ~ 20 * um spatial resolution for FToF, B0, RPs/OMD. * ~50 um under the metal eletrode. To be improved


Fermilab Test Beam Setup





HPK Strip Sensor (4.5x10 mm²) HPK Pixel Sensor (2x2 mm²)

Zhenyu Ye @ LBNL/UIC

Two? HPK Productions

- Improve timing and spatial resolutions
 - 1-cm long, 50-um thick, E-type strip: need to improve timing resolution from ~35 to <30 ps
 - Suffer from small amplitude, increasing sensor thickness and/or reducing charge sharing (higher resistivity or lower interstrip capacitance, or wider metal width) can help?
 - E-type is the highest resistivity HPK, 50 um dominated by Landau so not thicker
 - Smaller electrodes to reduce interstrip capacitance
 - -> reduce metal width from 50um? Shorten the electrodes and increase pitch?
 - 150-um metal, 20-um thick, pad: improve spatial resolution under metal from ~50 to 20 um
 - Reduce metal electrode width from 150 to 100-75-50 um -> Doable
 - 20->30 um thick? -> Doable
- Produce large sensors for module assembly
 - Strip baseline: 64*4 strips with 500-um pitch and 1-cm length, with active area 3.2x4 cm²
 - Start from 1.6x2, **3.2x2?**, or 3.2x4 cm²
 - Pad baseline: 32*32 pads with 500-um pitch, with active area 1.6*1.6 cm²
 - Start from **1.6x1.6?**, 1.6x3.2, or 3.2x3.2 cm²
 - Previous production 2x2 cm² yield was low, cracks in wafer materials, will try to avoid but not guaranteed. **Ask HPK**

Summary

- By CD2/3 review (10/2024), the EIC detector design should be 90% final (70-80% is not ideal but acceptable).
- Encouraging results from the sensors from the first HPK production.
- Next HPK production(s), ideally tested in Spring 2024 focus on
 - Improve timing resolution for strip sensor, and spatial resolution under the metal for pad sensors
 - Produce large sensors in preparation for CD2/3 (module prototyping, cost/yield estimates)
- Question:
 - schedule/cost of such R&D productions
 - cost for construction (HPK-US)