IP8 DD4Hep Simulation

Jihee Kim (jkim11@bnl.gov) 2023/11/06

IP8 Far-Forward Layout

- World Volume filled with Vacuum
- Origin (0 cm, 0 cm, 0 cm)
- Crossing angles
 - lon crossing angle = +0.035 rad
- No beam pipe implemented yet

Reference from <u>https://wiki.bnl.gov/eic-detector-2/images/d/de/IR8_magnet_layout_12052022.xlsx</u> Reference from <u>https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf</u>

BNL EIC 2nd Detector Group Meeting - Jihee KIM

Far-Forward Acceptance

Method

• Far-Forward region

- Particles with $\theta < \sim 37 \text{ mrad} (2.1^{\circ})$
- Tag charged hadrons (protons, pions) or neutral particles (neutrons, photons)
- Single particle simulation focusing on scattering angle $0 < \theta_{MC} < 5$ mrad
 - Roman Pot at Secondary Focus for detecting charged particles from nuclear breakup
 - Proton energy: $E_p = 275 \text{ GeV}$
 - Zero Degree Calorimeter for detecting photons and neutrons
 - Neutron energy: $E_n = 275 \text{ GeV} (*\theta_{MC} < 10 \text{ mrad})$
 - Off-Momentum Detector for detecting protons from nuclear breakup
 - Proton energy: 123.75 GeV (45%) < E_p < 151.25 GeV (55%)

Roman Pots at Secondary Focus

Single Proton E = 275 GeV $0 < \theta_{MC} < 5$ mrad

About 95.4 % events were accepted and observed losses at higher theta (polar angle) Clipping occurs in Quadrupoles for protons

BNL EIC 2nd Detector Group Meeting - Jihee KIM

Kindly Provided by Alex Jentsch using EicRoot Simulation Event Display Reference from https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf Clipping on Acceptance of Far-Forward

275 GeV Neutrons

123.75 – 151.25 GeV Protons

DD4hep simulation event display was not successful...

Roman Pots at Secondary Focus

Single Proton E = 275 GeV $0 < \theta_{MC} < 5$ mrad

Roman Pots at Secondary Focus

Single Proton E = 275 GeV $0 < \theta_{MC} < 5$ mrad

BNL EIC 2nd Detector Group Meeting - Jihee KIM

Single Neutron E = 275 GeV $0 < \theta_{MC} < 5$ mrad

Single Neutron E = 275 GeV $0 < \theta_{MC} < 5$ mrad

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) $0 < \theta_{MC} < 5$ mrad

About 64.7 % events were accepted where scattering angle stretched upto 2 mrad Hadron lattice in simulation set to be 275 GeV proton

BNL EIC 2nd Detector Group Meeting - Jihee KIM

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) $0 < \theta_{MC} < 5$ mrad

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) $0 < \theta_{MC} < 5$ mrad

Incoherent Tagging Power

Method

• Used **BeAGLE** 791k events with $1 < Q^2 < 10$

- **ePb 18**×**110 GeV incoherent diffractive** $J/\psi(\mu\mu)$ **events** $ePb \rightarrow e' + J/\psi(\mu\mu) + X$ (S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1-9.hepmc)
- Through afterburner : applied crossing angle 35 mrad and beam parameters as in IP6 eAu from EIC CDR table 3.5
- Discarded events having more than one electrons in final state within $\eta < -1$
- Calculated 10σ radial cut based on IP6 eAu from EIC CDR table 3.5
 - $R_{10\sigma} \sim 3.89526 \text{ mm}$
- Tagging power
 - Checked if any registered RAW hits exist in any of far-forward detectors, then be tagged *no central detector yet*
 - For **RPSF**, if any registered RAW hits exist less than 10σ cut, ***not be tagged***

Final-state Electrons

Candidates for e'

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Within BeAGLE incoherent J/ ψ events, there can be multiple electrons in final-state If there are multiple electrons, take electron having less than -1 in rapidity However, more than one electron heading backward ($\eta < -1$), then discard for now

Nuclear Breakups Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

	Nuclear Breakups at Final State	Number of Events
Generated Level	Only Neutrons	7.55 %
	Only Protons	0.0 %
	Only Photons	3.23 %
	Neutrons + Protons	3.28 %
	Neutrons + Photons	43.97 %
	Protons + Photons	2.24 %
	Neutrons + Protons + Photons	39.73 %

t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + I/\psi(\mu\mu) + X$

Nuclear Breakups Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Remaining Events

Remaining events have higher mass nuclear remnants and low number of particles in final state

Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Remaining events have higher mass nuclear remnants and very small scattering angle

Summary

- Converted coordinate system in IP8 far-forward lattice and detectors in DD4hep simulation
 - \circ From machine coordinate to electron beamline reference + origin (0,0,0)
 - Expect to make easier to add central detector with IP8 FF
- With basic components are in-place, looked at acceptance on each FF detector which makes sense
 - Some further optimizations needed
- $_{\odot}$ Given current layout, looked at incoherent event on tagging power with 1 < Q^2 < 10 and t < 0.2
 - Checked on coherent diffractive minima at t ~ 0.02, 0.05, and 0.1
 - Tagging power ~ 96%, 98%, and 99% at t ~ 0.02, 0.05, and 0.1
 - Regarding remaining events, it has low number of particles in final state and high mass nuclear remnants

Next Steps

- Add simplified beampipe in DD4hep to quantify impact on acceptance/efficiency
- **Add central tracker only** to reconstruct vector meson (J/ψ) in mid-rapidity
- Optimize detector layout and find possible technologies and required energy/spatial resolution

□ Add threshold in terms of hit reconstruction

□ Find link to connect **hit-level info to true particle ID**

BackUp Slide

Q² and t Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

