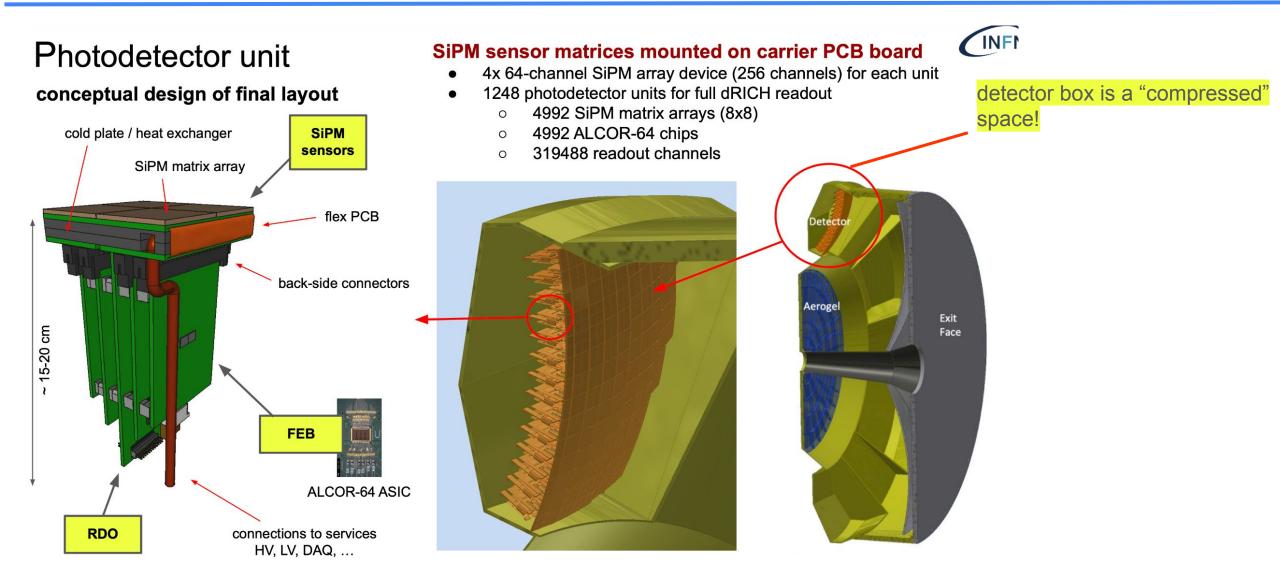


dRICH RDO "VTRx+ needs for dRICH"

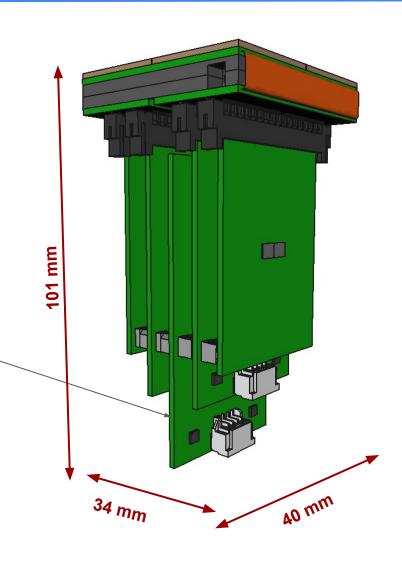
P. Antonioli for the dRICH sub-system INFN Bologna

Reference: major update about dRICH DAQ at recent last 15 November


Outline

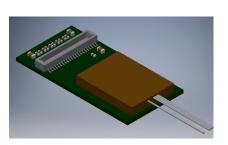
- RDO Overview
- Design elements and miscellanea updates VTRx+ (and RDO) relevant
 - VTRx+ update
 - Inputs from CMS Padova and ePIC DAQ
 - SEU rates + FPGA choice and baseline selections
- Baseline RDO design: VTRx+ integration
- Back-end information & plans

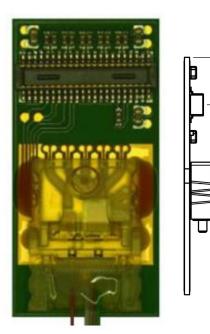
RDO: where is inside dRICH?

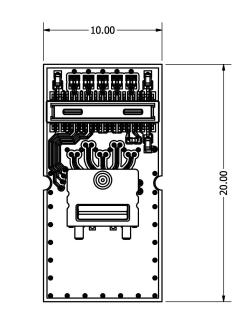

RDO Overview

RDO is as a component of dRICH PDU

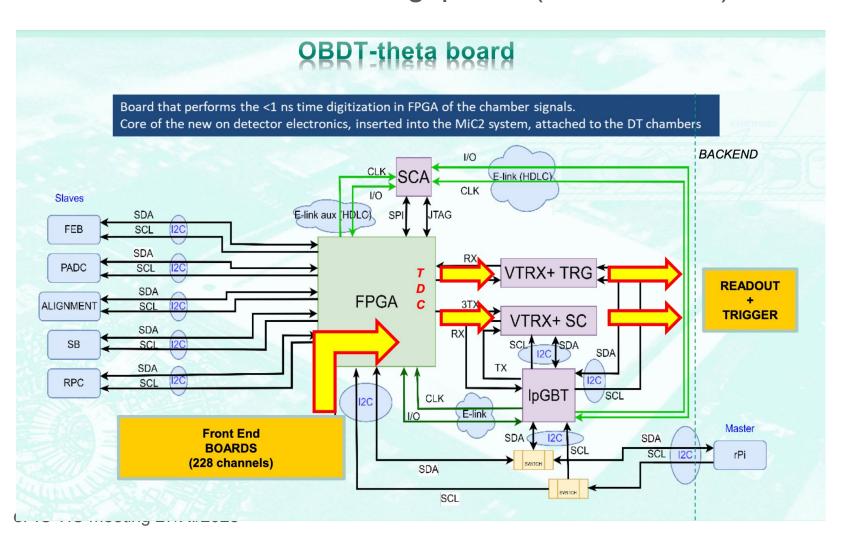
basic RDO specs/numbers:


- provide interface to ePIC DAQ
- provide readout/config to 4 ALCOR64
- route HV to SiPM via FEB
- 1 optical link (TX/RX)
- "control" annealing (MOSFET setup)
- services (T sensors, current monitor, ...)
- 4x9 cm² surface available



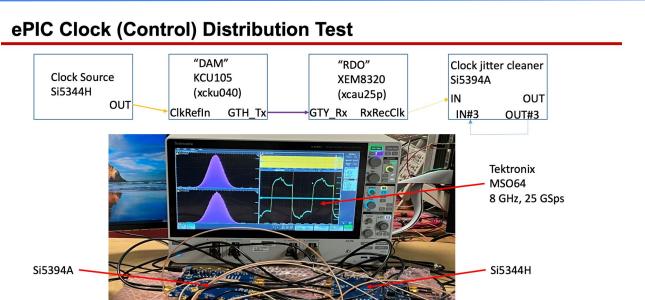

VTRx+ update

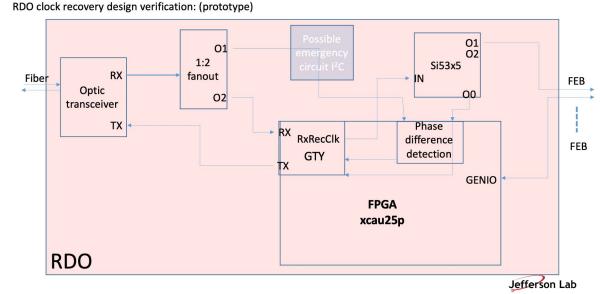
- remember: VTRx+ has a "compact, low-power and rad-tolerant" optical transceiver
- bandwidth: 10 Gbps TX, 2.5 Gbps RX
- requested ePIC/EIC project to prebook 1500 VTRx+ for dRICH: this is total + 20% spares
- ordered via CERN/ALICE 20 VTRx+ for 2024/5 pre-production (pigtail 40 cm length with MTP connector)



Input from CMS Padova

CMS Padova realized for Drift Tube chambers readout a card with a Polarfire FPGA without using IpGBT (to send data)




- no problem connecting directly FPGA serializer to VTRX+
- however clock still reconstructed via lpGBT

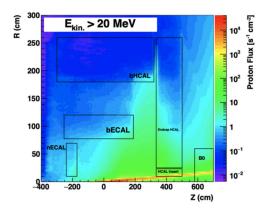
clock recovery on PolarFire might be challenging

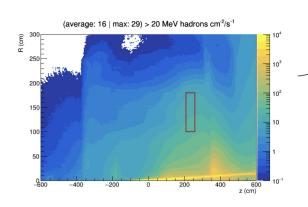
Input from ePIC timing subgroup

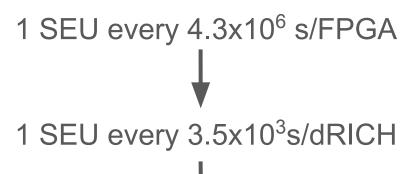
Context: ePIC timing subgroup is a subset of DAQ&Electronics WG

XEM8320

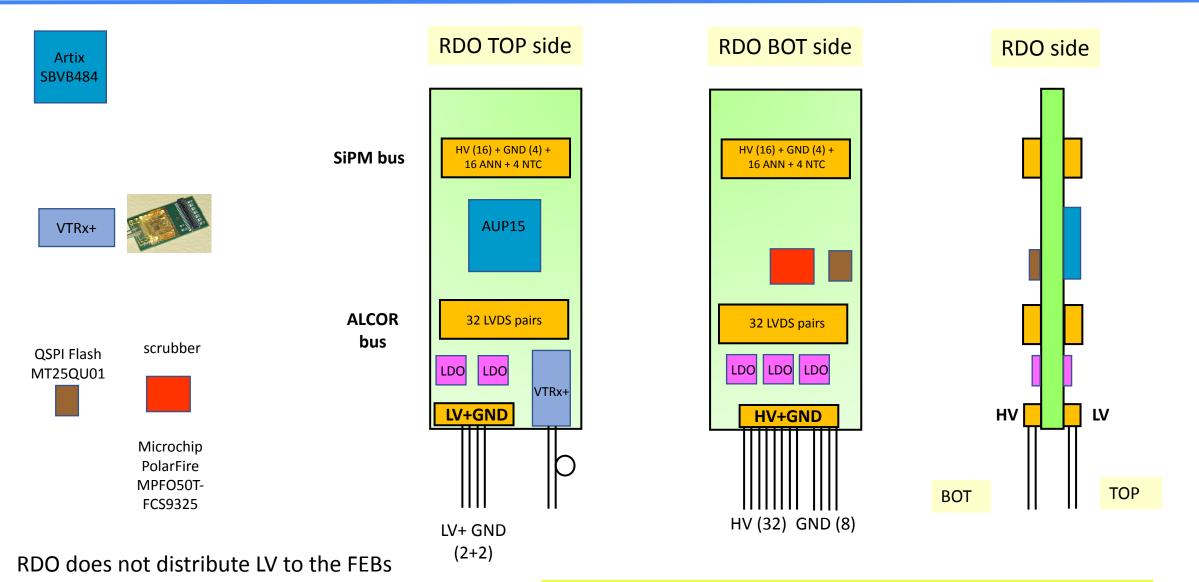
William GU Jefferson Lab


- First tests from W. Gu (JLab)
- J. Schombach (ORNL) testing lpGBT+VTRx+ clock transmissions
- Jo presented recently results using lpGBT+VTRx+ using a frequency equal to % f_{FIC} (39.42 MHz)
- ePIC link protocol not yet defined
- default RDO should have ARTIX UltraScale+
- clock multiplier from 98 MHz to 396 MHz to be studied with care


KCU105


SEU rates + FPGA selection

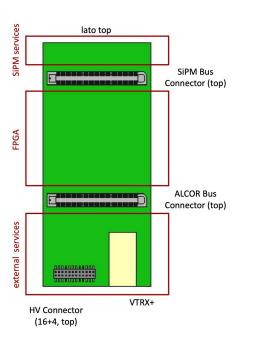
Xilinx <u>declares</u> 2.67×10^{-16} cm²/bit cross-section for CRAM bits AUP15 has $42.8 \times 10^{+6}$ configuration bits dRICH flux (hadrons > 20 MeV): 20 cm⁻²s⁻¹

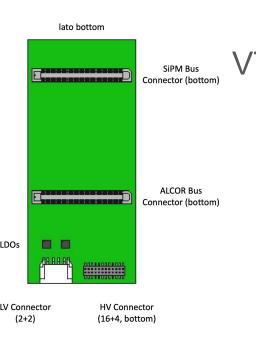


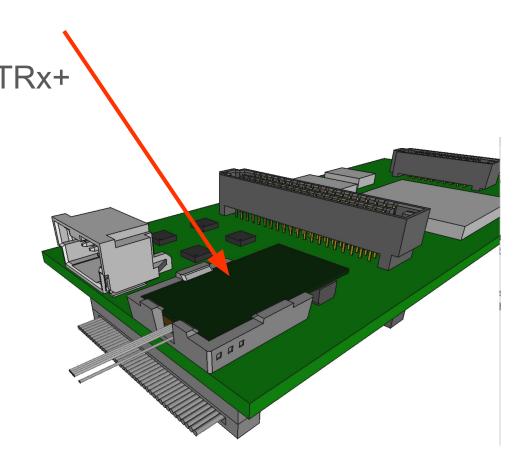
1 SEU every hour in whole dRICH

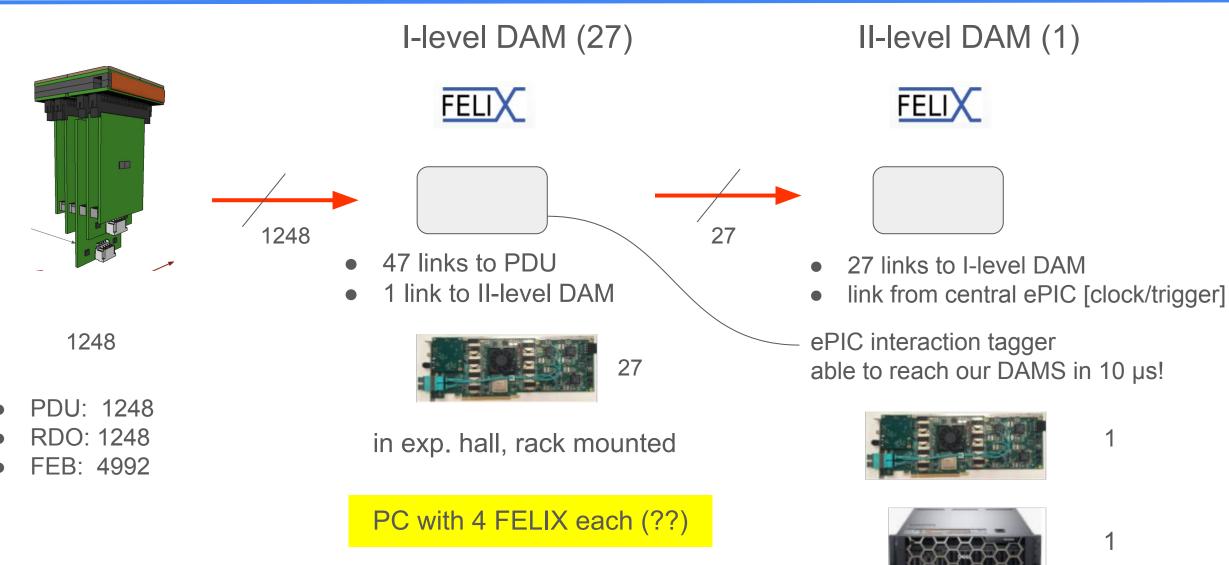
- SEU rate if confirmed seems manageable
- A scrubber might not be strictly needed
- RDO final design to be validated with a full irradiation test
- Artix Ultrascale+ AU15P-SBVB484 (see backup) good compromise between physical size 1.9x1.9 cm², resources (5.1 Mb RAM), I/O pins (204)
- Smallest available Polarfire (MPF050T) as rad-tolerant scrubber seems effective choice (see later)


RDO and VTRx+: how they could look like (I)






RDO and VTRx+: how they could look like... (II)



- VTRx+ pigtail length and cabling to detector box to be discussed with DAQ group (see talk by <u>J. Huang at DAQ meeting 2 Nov</u>)
- TOF group is developing in 2024 a RDO prototype too. We are in touch and plan is to share expertise (and possibly IP...;-))

RDO and ePIC DAQ

dRICH has largest number of RDOs in ePIC

EPIC Detector Scale and Technology Summary:

Detector System	Channels	RDO	Gb/s (RDO)	Gb/s (Tape)	DAM Boards	Readout Technology	Notes
Si Tracking: 3 vertex layers, 2 sagitta layers, 5 backward disks, 5 forward disks	7 m^2 36B pixels 5,200 MAPS sensors	400	26	26	17	MAPS: Several flavors: curved its-3 sensors for vertex Its-2 staves / w improvements	Fiber count limited by Artix Transceivers
MPGD tracking: Electron Endcap Hadron Endcap Inner Barrel Outer Barrel	16k 16k 30k 140k	8 8 30 72	1	.2	5	uRWELL / SALSA uRWELL / SALSA MicroMegas / SALSA uRWELL / SALSA	64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB for uRWELL
Forward Calorimeters: LFHCAL HCAL insert* ECAL W/SciFi Barrel Calorimeters: HCAL ECAL SciFi/PB ECAL ASTROPIX Backward Calorimeters: NHCAL ECAL (PWO)	63,280 8k 16,000 7680 5,760 500M pixels 3,256 2852	74 9 64 9 32 230 18 12	502	28	19	SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete SiPM / HG2CROC SiPM / HG2CROC Astropix SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete	Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO 32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve. HCAL 1536x5 *HCAL insert not in baseline Assume similar structure to its-2 but with sensors with 250k pixels for RDO calculation. 24 ch/feb, 8 RDO estimate, 23 RDO conservative
Far Forward: B0: 3 MAPS layers 1 or 2 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 32 Silicon pad layer	300M pixel 1M 1M (4 x 135k layers x 2 dets) 640k (4 x 80k layers x 2 dets) 400 11,520	10 30 64 42 10	15	8	8	MAPS AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICE FoCal-E	3x20cmx20cm 600^cm layers (1 or 2 layers) 13 x 26cm layers 9.6 x 22.4cm layers There are alternatives for AC-LGAD using MAPS and low channel count DC-LGAD timing layers
4 silicon pixel layers 2 boxes scintillator	160k 72 WO Ck	(a	lmost) done	e comi	municating o	IRICH numerology i
Far Backward: Low Q Tagger 1 Low Q Tagger 2 Low Q Tagger 1+2 Cal 2 x Lumi PS Calorimeter Lumi PS tracker	1.3M pixels 480k pixels 700 1425/75 80M pixels	12 12 1 1 24	150	1	4	Timepix4 Timepix4 (SiPM/HG2CROC) / (PMT/FLASH) Timepix4	
PID-TOF: Barrel Endcap	2.2M 5.6 M	288 212	31	1	17	AC-LGAD / EICROC (strip) AC-LGAD / EICROC (pixel)	bTOF 128 ch/ASIC, 64 ASIC/RDO eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)
PID-Cherenkov: dRICH	317,952	1242	1240	13.5	28	SiPM / ALCOR	Worse case after radiation. Includes 30% timing window. Requires further data volume reduction
pfRICH DIRC	69,632 69,632	17 24	24 11	12.5 6	1	HRPPD / EICROC (strip or pixel) HRPPD / EICROC (strip or pixel)	software trigger

The big dRICH DAQ plan

2024	2025	2026
 hardware effort RDO prototype as close as possible to final RDO readout of old FEB32 / VTRx+ implementation initial ePIC link test with RDO (clock) input to TDR radiation tests 	 integration with ALCOR64 in the PDU readout with VC709 & ePIC link (including clock) RDO rev. 2 final components possibly test in detector box (likely radiation tests again) 	 FELIX available in ePIC to groups use of DAM (FELIX2) crucial firmware development L1-DAM / L2-DAM

2027	2028	2029
production	assembly	assembly in-situ DAM deployment + commissioning

in parallel:

- someone has to think/build ePIC interaction tagger
- data reduction/calibration through L2-DAM FPGA or SRO to be integrated

Conclusions

- ongoing effort toward specifications/requirements for RDO (at 60/70%)
- defined number of VTRX+ needed (1500) [total + 20% spares]
- secured VTRx+ sample (20) for early prototypes and defined FPGA baseline
- good liaisons with relevant ePIC "corners" (DAQ group, timing DAQ sub-group, other subsystems working on RDO prototypes...)
 - With respect to ePIC, our asks (somehow RDO, VTRx+ and DAQ related)
- ★ need of a final word about securing this pre-booking with CERN
- ★ common mitigation strategy for SEU in RDO Artix Ultrascale+ based?
- ★ RDO design and dRICH DAQ is sustainable as long as we will have an interaction tagger (to be at least partially described in the TDR...)