

On the use of VTRX+ in ePIC MPGD detectors

Irakli.mandjavidze@cea.fr on behalf of the MPGD group

> ePIC TIC meeting 27/Nov/2023

Quick outlook

- Studies of the use of VTRX+ CyMBaL tracker based on system considerations approach
 - \rightarrow Bandwidth and functional considerations
 - \rightarrow Mechanical, radiation, magnetic field and power constraints
- 3 frontend organization options studied combined with 2 powering schemes
 - \rightarrow FEB with electrical RDO interface
 - no VTRX+
 - \rightarrow Merged FEB / RDO with optical VTRX+ interface
 - Few details in Backup With a variant of an on-detector RDO serving a number of FEBs
 - \rightarrow FEB with optical interface
 - COTS FireFly from Samtec or community VTRX+
- Studies applicable and extended to all MPGDs
 - \rightarrow Can be shared with interested groups
 - For crosscheck, improvements
 - For alleviation or enhancement of preoccupations
- Brief outcome concerning only VTRX+ use cases

General remarks on VTRX+

• Bandwidth

- → The 2.5 Gbit/s Rx link is more than enough to synchronize frontends, convey sync and async commands
- \rightarrow The 4 x 10 (5) Gbit/s Tx links are more than enough to transmit physics, calibration, slow control and monitoring data

• Environmentally friendly

- \rightarrow Lightweight
- \rightarrow Small
- \rightarrow Radiation hard
- \rightarrow Low power
 - However, requires 2 power supplies

• Fragile

- \rightarrow A common ePIC pool of QA provision units ?
- \rightarrow Per sub-system pool ?
- Pigtail feature
 - \rightarrow May require more than 1 pigtail length
 - Increasing the pool of QA provision units
 - $\rightarrow\,$ May require to take the choice decision now
 - When space constraints of the inner detector are still changing

Player

Estimation of MPGD VTRX+ needs based on current knowledge

- Certain VTRX+ frontend organization options require an on-board "intelligence" implementing a subset of IpGBT
 - $\rightarrow\,$ An association of a low-end FPGA and VTRX+
 - \rightarrow Merged FEB / RDO : ~650 VTRX+ units including 10% extras for prototyping
 - CyMBaL 128 ; µRWELL-BOT 384 ; µRWELL-ECT 80
 - ~50% more power compared to lowest power option of a FEB with electrical RDO interface
 - 45 48 mW / channel

- → On-detector RDO : ~190 VTRX+ units including 25% extras for prototyping
 - RDO aggregating 4 FEBs
 - CyMBaL 32 ; µRWELL-BOT 96 ; µRWELL-ECT 20
 - ~11% more power compared to lowest power option of a FEB with electrical RDO interface
 - 33 37 mW / channel

- · Harsh environment especially due to almost 2T magnetic field
 - → Complex power distribution network for multiple voltage rating components : at least, 1V (substantial), 1.2V (bulk), 2.5V, may be 1.8V
 - May require bulky high cross-section LV wires if DC-DC converters cannot be used
 - May require extra space for DC-DC converters if they are bulky and for shielding if they are EMI source
 - $\rightarrow~$ Make sure SEU rates are acceptable and recovery time is low
 - *e.g.* 8h MTBF for entire CyMBaL tracker with 128 merged FEB/RDOs

VTRX+ for ePIC MPGD 27/Nov/2023 TIC

Estimation of VTRX+ needs based on current knowledge

- FEB with direct VTRX+ optical interface option requires special features from FE ASIC
 - \rightarrow An on-chip interface to downstream serial Rx link for clock, sync and async command recovery
 - \rightarrow Plus non-mandatory handy features
 - Low speed ADC for on-chip and environmental monitoring
 - Few GPIO pins for on board control
 - \rightarrow (more than) considered for Salsa

- \rightarrow 660 VTRX+ units including 10% extras for prototyping
 - ~8% more power compared to lowest power option of a FEB with electrical RDO interface
 - 32-35 mW / ch
 - RDO layer removed completely direct FEB DAM connections

- Better immunity to harsh environment
 - \rightarrow Smaller board with tiny extra components
 - \rightarrow All components are radiation tolerant
 - → May require less complex power distribution network with voltage ratings limited to only 1.2V (bulk), 2.5V (negligible)

Rataelfarrout ASIC

Few details in Bachup

Mot de la fin

- Our knowledge of the ePIC Inner detector in general and its MPGDs in particular is not mature enough
- Studies are needed and ongoing within MPGD community, within Elec/DAQ and Integration groups
 - \rightarrow Can we enhance Salsa with clock-data recovery mechanism ?
 - \rightarrow Can the same FEB form-factor be used for all MPGDs ?
 - $\rightarrow~$ Can we use FPGAs within the inner detectors ?
 - $\rightarrow\,$ Can we use DC/DC regulators within the inner detectors ?
 - \rightarrow What are the COTS components compatible with the low ePIC radiation environment ?
 - → Can we count on ePIC-wide access to CERNs radiation hardened, magnetic field tolerant powering components?
 - $\rightarrow\,$ How close can be RDOs placed to FEBs ?
 - \rightarrow How close can be LV power supplies placed to FEBs ?
 - $\rightarrow \dots$
 - *e.g.* cooling related questions
- Despite of the effort, cannot commit firmly either on VTRX+ use cases nor on their quantities
 - \rightarrow Depending of FEB/RDO organization options, the needs are O(200) or O(700)
 - Plus 5-10% for QA provision units
 - → Extra uncertainty due to the risk mitigation scenario with 8 more disks and 2 more barrel layers : 224 FEBs
 - 56 or 224 more VTRX+ depending on FEB/RDO organization option
 - \rightarrow Might be a lost opportunity

Backup

A CyMBaL tracker reminder to illustrate MPGD environment

• Space is stringent: 6 cm

 \rightarrow Detectors, gas pipes, HV cables

SVT MPGDs ToF (fiducial volume) s

• On detector frontend electronics

 \rightarrow FEBs + LV distribution + RDO interface cabling + cooling

Example of CyMBaL: one of the possible configurations under study

- Still under torment of optimization
 → Just a snapshot to give an idea
- 32K channels
- 128 256-channel FEBs
 - \rightarrow Only central detector FEBs visible
 - Peripheral FEBs in a row bellow
 - Or in a second row
- 32 1024-channel RDOs \rightarrow 4 FEBs per RDO
- Where to place RDOs not really clear
 - \rightarrow Electrical FEB-RDO interface : 5-6 m
 - 16 on either side of Barrel
 - \rightarrow Optical FEB-RDO interface : no limit
 - Attractive option

Inner detector fronted environment

- Restricted material budget including for cooling
- Magnetic field
- Radiation
- Example of CyMBaL tracker environment
 - \rightarrow TID after 10 years :
 - \rightarrow Neutron fluence after 10 years:
 - \rightarrow 20 MeV proton flux:
 - \rightarrow Magnetic field:

10 krad 10¹¹ n_{eq} / cm² 100 particle / cm² / s 1.9 T

CyMBaL is here

- Most probably similar radiation and magnetic field environment for other MPGD detector frontends
- What about the radiation and magnetic field environment of other inner detector frontends?

FE organization options

- Passive electrical interface
 - \rightarrow Downstream: clock, synch commands, asynchronous commands (I2C)
 - \rightarrow Upstream: physics and calibration data, configuration and monitoring

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Low active component count: minimal power consumption
 - ~30-35 mW / channel
 - 1 mm² (DC/DC + LDO) or 5.6 mm² (LDO only) wires to power a FEB
 - Caution: DC/DC regulators may be bulky and source of EMI

• RDO: Is there any suitable place ?

\rightarrow Overall integration issue

irakli.mandjavidze@cea.fr

On-FEB RDO in a harsh environment

• FE ASICs are thought with "IpGBT / CERN" interfaces

- → Separate lines for downstream interfaces: clock, synchronous commands, asynchronous configuration commands
- → VTRX+ needs to be coupled with an on-RDO "intelligence" to recover this imbedded information
- \rightarrow CERN has lpGBT; ePIC counts on FPGAs

On FEB FPGA / VTRX+ combination

- \rightarrow SEU effects need to be understood, acceptable failure rates to be agreed on
 - Estimation: 8h MTBF for entire CyMBaL with a low cost low profile Latice Nexus radiation tolerant FPGA
- \rightarrow Worst power consumption scenario
 - Estimation: 45-50 mW / channel 50% increase compared to electrical interface
 - 1.5 mm² (DC/DC + LDO) or 8 mm² (LDO only) wires to power FEB
- \rightarrow Cooling and its additional infrastructure !

- On-detector RDO per detector module
 - \rightarrow 4 FEBs / RDO
 - Higher integration
 - More optimal use of RDO resources : FPGA logic + VTRX bandwidth
 - \rightarrow Harsh environment
 - Same SEU preoccupation as for merged FEB / RDO
 - \rightarrow Further studies needed to understand on-detector space constraints
 - Place
 - An extra board with interface optimization: number, size
 - Power distribution
 - Cooling

- FE ASICs are directly interfaced to 4-lane bidirectional parallel optic FireFly transceivers
 - → Requires an "innovative" ASIC interface: Rx line encoding clock and data (sync & async commands)
 - \rightarrow Plus extra handy features:
 - A low speed embedded ADC for environmental monitoring
 - A GPIO outputs for on-board control

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Low active component count: minimal power consumption
 - ~35-37 mW / channel 15% increase compared to pure electrical interface
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB

• No RDO layer !

irakli.mandjavidze@cea.fr

- FE ASICs are directly interfaced to VTRX+
 - \rightarrow Downlink with embedded clock / sync / async data distributed with high fidelity fan-out
 - \rightarrow Requires an "innovative" ASIC interface
 - Working on CDR circuitry for Salsa

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Minimal power consumption after electrical interface option: only VTRX+ consumption added
 - ~ 32-35 mW / channel 8% increase compared to pure electrical interface
 - 0.9 mm² (DC/DC + LDO) or 5.8 mm² (LDO only) wires to FEB

• No RDO layer !

irakli.mandjavidze@cea.fr

Clock and fast command distribution example

- Rafael Radiation-hArd Fan-out ASIC for Experiments at LHC developed at Irfu, CEA Saclay
 - \rightarrow 3 inputs and 13 outputs
 - \rightarrow CLPS signaling
 - CM voltage: 0.6 V
 - Differential swing: 200-400 mV
 - Programmable drive and emphasis
 - \rightarrow Single buffer: any input to 13 outputs
 - \rightarrow Double buffer
 - Input 1 to 6 outputs
 - Input 3 to 7 outputs
 - \rightarrow Up to 400 MHz and beyond
 - \rightarrow Low additive jitter : < 2 ps
 - \rightarrow Propagation delay : ~1 ns
 - \rightarrow C2C and P2P skew : < 300 ps
 - \rightarrow 130 nm technology
 - \rightarrow LHC-level TID, neutron, SEU & latch-up

Data bandwidth

- Estimated physics data bandwidth per 256-channel FEB
 - \rightarrow CyMBaL tracker
- Data volume determined by physics
 - \rightarrow Calibration data are small
 - Calibration can be done regularly on-line
- Background generated data has to be taken into account
 - \rightarrow Hens safety factor of 5
- VTRX+:
 - \rightarrow Single 5-10 Gbit/s Tx link seems to be enough
 - One needs to aggregate 66.6 64-channel ASICs (4k channels) to load VTRX+ at 50% (20 Gbit/s) of its total throughput
 - 1 VTRX = 1/8 of the entire CyMBaL : simply impractical
 - $\rightarrow\,$ The 2.5 Gbit/s Rx link is more than enough for MPGDs to
 - Recover good quality clock
 - Pass synchronous commands
 - Pass slow control asynchronous commands
 - That is exactly what is done in Clas12 for sub-nanosecond synchronization of ~20k tracker channels

Chan kHz	nel rate	Sampling Mbit/s	Amplitude - Time Mbit/s
2	(physics)	200	40
10	(safety)	1 200	200
50	(Clas12)	5 500	900