
Radiation studies

Highest fluence is ~1E12 neutron equivalent nar beampipe.

We want to test to have hard data for S/N ratio for calorimetry applications, and ultimately include the induced noise in simulations

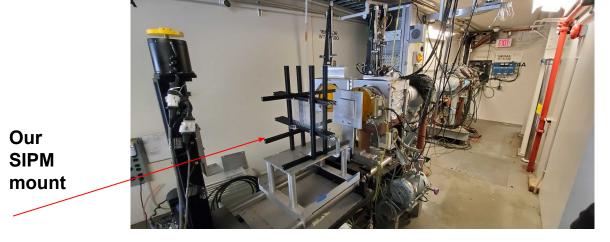
Rad damage comparison

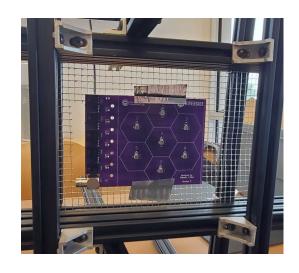
(Dark current at RT at 2V is ~30 higher than at -30C)

Up to 5e13 1 MeV neutrons / cm2 over lifetime of experiment (TDR)	Up to 1e12 1 MeV neutrons / cm2 Per year at top luminosity.
Operating temperature: -30C (TDR)	Operating temperature: room temperature

max neutron fluence in 1 year of EIC is similar to the maximum tolerable in CMS HGCAL design over lifetime

<u> </u>	
SiPM used: 1.3 mm and 2 mm, 15 microns	SiPM used: 1.3 mm (or 3 mm?), 15 microns


Dedicated irradiation campaign and beamtest Dedicated irradiation campaign: 2022-2023 February 2024 @ UC Davis

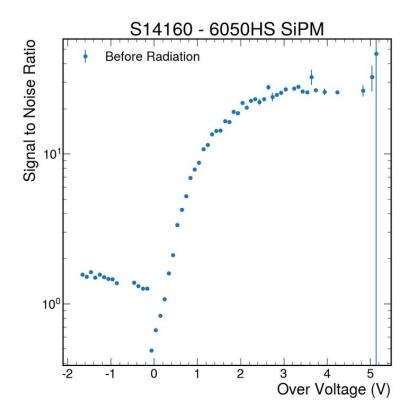

Signal-to-noise ratio:	Signal-to-noise ratio:
S/N > 10 for 1 MIP (as per TDR)	S/N > 5 at 1 MIP to be able to keep a 0.5 MIP threshold with
S/N ~2.5 for 1 MIP at highest dose	2.5 sigma suppression of noise
(as per latest public result)	

Mitigation measures (for higher dose region)	Mitigation measures (for higher dose region):
- Larger SiPM (2 mm instead of 1.3 mm)	- Large SiPM 3 mm, casted scintillator
- Casted scintillator, not injected molded scintillator	- Insert: SiPM in high Design to keep SiPM accessible for

annealing after each run.

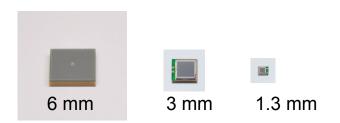
Old plan: at Berkeley Lab during summer (cancelled due to 88" downtime). New Plan: UC Davis cyclotron in Feb 2024.

We will irradiate bare SiPMs and some SiPM in boards (could be tested with HGROC boards)



Planned tests

Usual ones (IV, dark rate) but but one is S/R @ MIP vs V before and after annealing



Plans

- February 2024 at <u>UC Davis cyclotron 60 MeV proton beam.</u>
 B. Schmookler is organizing test and has established contact with UC Davis, we are are in the process of scheduling and finding the money (~6k for a day)
- Plan to measure 6 different fluences from (1E8 to 1E13) in few hours.
- Will characterize SiPM before and after irradiation, and after annealing, with tests mimicking realistic calorimetry applications
- Tests will likely be useful reference for various EIC forward applications

Plan to test:

\$14160-3015 \$14160-1315 \$14160-6050 \$14160-6015 (we were sent some of these by project)