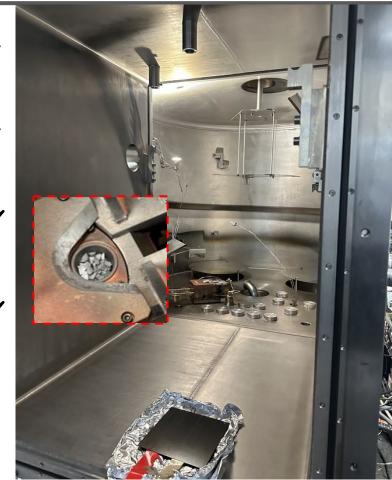
Mirror Coating Updates

Nov 19, 2023

Where are we? How ready are we?


- Water cooling system Stability
 - 24 hour continuous operation
- Vacuum quality
 - 3x10⁻⁶ Torr (current configuration limit)
- Tape stability
 - Stickiness and outgassing test
- Rotation Motor
 - Continuous 1 hour operating ~ 1 rev/s

Documentation

Coating Documentation:

https://docs.google.com/spreadsheets/d/1qd2DJs3Ms1QuVJTnB4B2kjaaJST8t2qY7ZGq4mlv Hr0/edit?usp=sharinq

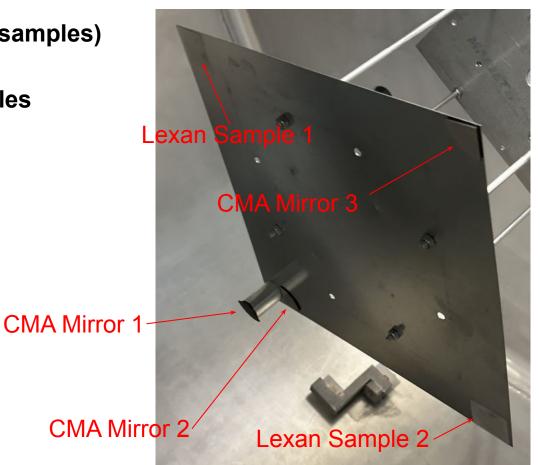
Coating Plan:

https://elog.cfnssbu.physics.sunysb.edu/SoLID/17

elog to keep track of the progress:

https://elog.cfnssbu.physics.sunysb.edu/SoLID/

First coating preparation:


https://elog.cfnssbu.physics.sunysb.edu/SoLID/

Sincere Gratitudes for SPhenix Colleagues

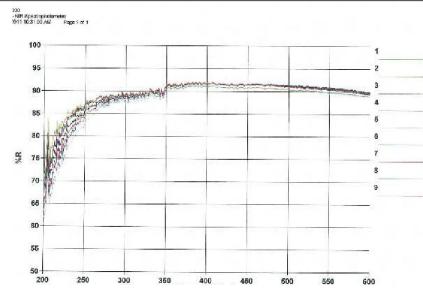
 To Ross Corliss and Vassu Doomra for their patience and guidance in preparing and setting up the evaporator.

What did we coat?

- Three CMA Mirrors (quarter samples)
- Two small Lexan 8010 samples

First coating

CMA Mirror sample 2

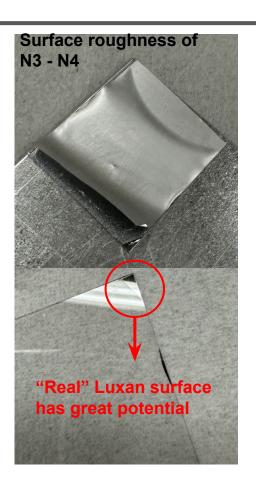


CMA Mirror sample 3

- Three CMA Mirrors (quarter samples)
- Two small Lexan 8010 samples

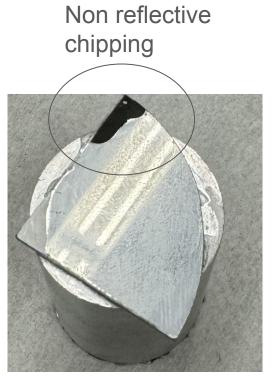
High quality reflectors

1.5cm in diameter, Coated by ECI


What did we learn?

We mis-understood our lexan sample all this time!

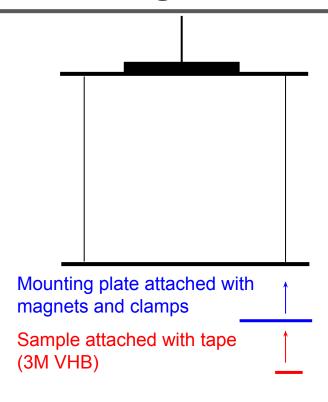
- Sample has a layer of coating above!
- Request to Andy: please remeasure the surface roughness after peeling off the coating
- Samples will be recoated


e-Gun operating at 6.6K, 180mA

- Coating rate is proportional to the loaded material mass
- 1g (33%) of Al lost during the evaporation process
- 3g Al is capable of supporting 50 min deposition operating

What we don't understand

Why did the CMA Mirror Sample 1 go bad?


Immediate Next Step

- Initiate 2nd round of coating
 - Coating Purdue mirror substrate samples
- Luxan samples without the coating
- Introduce substrate cleaning process (partial implementation)
 - Difficulty (requires resources to address):
 - No professional gloves, No professional lens paper, No lint-free cleaning fabric
 - No clean bench top for optics work
 - Improving the handling

Immediate Next Step

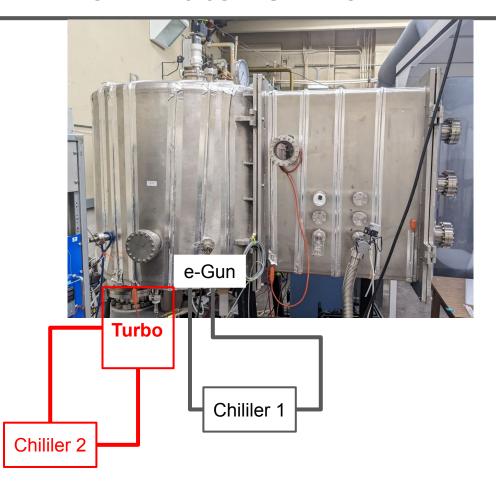
- Introduce substrate cleaning process
 - Difficulty (requires resources to address):
 - No professional gloves, No professional lens paper, No lint-free cleaning fabric
 - No clean bench top for optics work
 - Improving the handling
- Easy mount/unmount scheme using magnet

An ungraded mounting scheme

Finger tighten fasteners

Metal wire-mesh to safeguarding the turbo and cryopumps

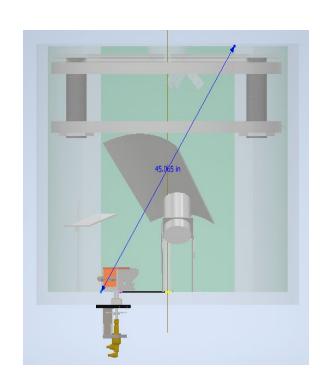
lint free knee pads (clean room)

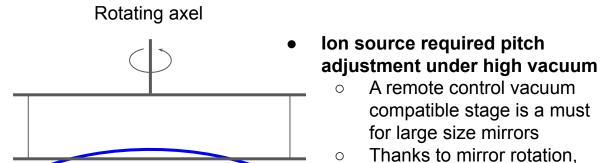

Assisting guiding rail for large mirror installation

Proposed Landscaping

A New Water Chiller

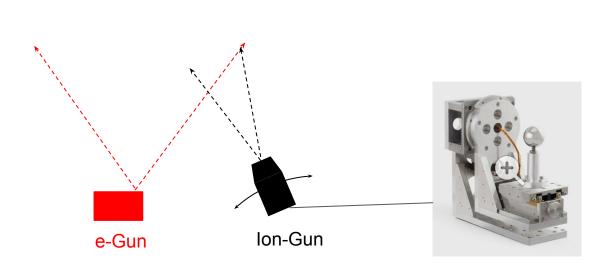
- Two Water chiller loops
 - Loop 1 cools e-Gun
 - Loop 2 cools turbo
- Currently, Loop 2 Chiller is broken
 - Motor is burnt
 - under repair
- Can we evaporate without cooling the turbo?
 - Yes. But we should never risk the turbo!!
- Recommendation:
 - We need a reliable water chiller (Item #1) immediately
 - Old repaired chiller will serve as a spare.

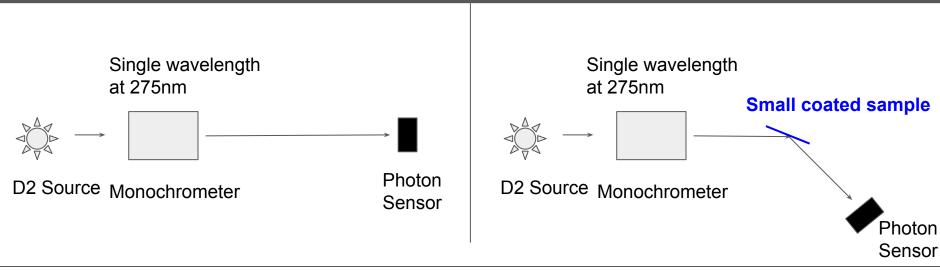

A Clean Space for Staging and Mount/Dismount Mirrors



Enclosed clear area (item #1)

- Mount/dismount mirror from mounting fixture before/after coating.
 - o On a stainless steel bench top.
- Accessing to the dry box (item #6) for load to the e-gun.
 - Minimize the exposure to the ambient dust and moisture


A Clean Space for Staging and Mount/Dismount Mirrors



Mirror

yaw angle is not needed

Quick validation of the coating

- A quick validation stand near the evaporator to validate the result at 275 nm wavelength
 - A significant time saver
 - A must have during the production
- It doesn't replace the full characterization!
 - After the quick validation, the coated product will be sent to Bob and Grag for full characterization
- Only D2 source is missing
 - Optical bench, darkbox, photon sensor and monochrometer will be SBU in kind constribution

Final Remarks

Item Description	Specification	Cost Description	
#1 Water Chiller	1HP, 6000 - 9000 BTU (cooling power)	\$4,000	
#2 Portable Clean Room	(6' x 8'): \$10,000	\$10,000	
#3 Shelf for Storage	If for Storage For the mirror storage \$600		
#4 Rotational Stage	For mounting the Ionized Argon source	\$4,000	
#5 D2 Lamp	Stabilized Deuterium UV Light Source (150-500nm)	\$3,500	
#6 Dry box	Storing sensitive coating material: chromium, Al, crucible	\$1,200	

- Item #1,2 and 6 are needed ASAP for the prototyping
- Item 3, 4 and 5 are needed for the full production

The refurbishment is separate

- The refurbishment cost shouldn't be mixed for the production estimate
- The maintenance, consumable and one time setup numbers are estimated separately

	Proto-type	Final assembly	Notes
Maintenance cost	\$2,000	\$4,000	Maintaince cost for the final assembly is estimated assuming one pump failure/two mantainace services cost
Cosumable cost	\$800	\$4,800	Assuming 8-12 segments plus spares, x6 times of the prototype comsumeble cost
Mounting fixture cost	\$2,000	N/A	Klaus: why not use the exisitng from SoLID?
Triangular rib mirror rob mater	\$900	\$3,600	
Machineshop cost cutting	\$500	\$2,000	
Attachment tape	\$200	\$600	
Total	\$6,400	\$15,000	

Proposed Refurbishment Items

Item Description	Specification	Cost Description
#1 Water Chiller	1HP, 6000 - 9000 BTU (cooling power)	\$4,000
#2 Portable Clean Room	(6' x 8'): \$10,000	\$10,000
#3 Shelf for Storage	For the mirror storage	\$600
#4 Rotational Stage	For mounting the Ionized Argon source	\$4,000
#5 D2 Lamp	Stabilized Deuterium UV Light Source (150-500nm)	\$3,500
#6 Dry box	Storing sensitive coating material: chromium, Al, crucible	\$1,200

Immediate Next Step

e-Gun

Voltage: 6.6 kV

Maximum current: 180 mA

Next Step

- First coating projected at Friday morning Nov 16th.
- Reflectivity measurement at BNL will follow.
- Tighten up the protocol on "clean" coating condition.
 - We are coating in a dirty environment
 - Requested PED fund to help with this.
- Practice and optimize the coating parameter