

On the readout of the ePIC MPGD detectors

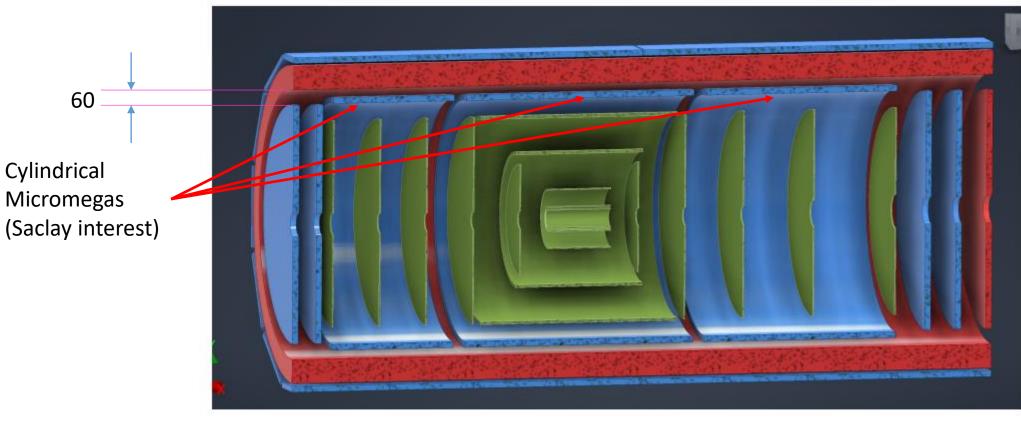
irakli.mandjavidze@cea.fr

MPGD-DSC General meeting 7/Dec/2023

• Preamble

- \rightarrow Will need to come out with functional and physical organization
- \rightarrow This presentation is oriented towards physical organization
 - Environmental and spatial constraints may require redistribution of functionality among the readout actors

- Reminder of the MPGD environment
- Reminder of the ePIC detector readout organization
- Frontend organization options
 - \rightarrow 5 options studied for CyMBaL tracker based on system considerations approach
 - Bandwidth and functional considerations
 - Mechanical, radiation, magnetic field and power constraints
 - \rightarrow Studies applicable to all MPGDs
- Outcome

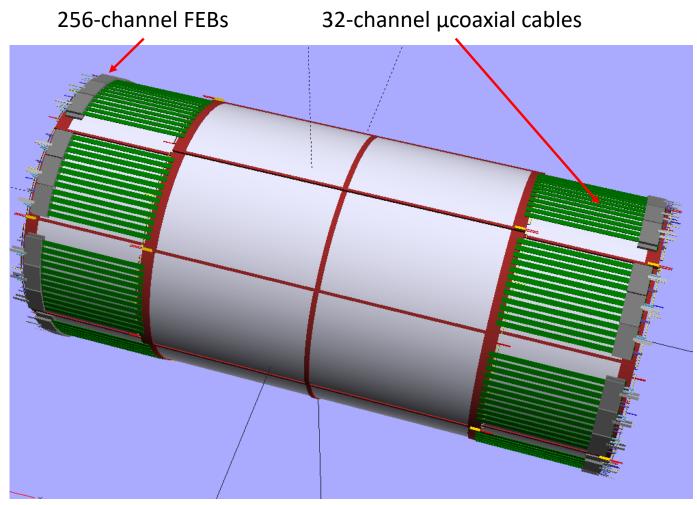


A CyMBaL tracker reminder to illustrate MPGD environment

- Space is stringent: 6 cm
 - \rightarrow Detectors, gas pipes, HV cables

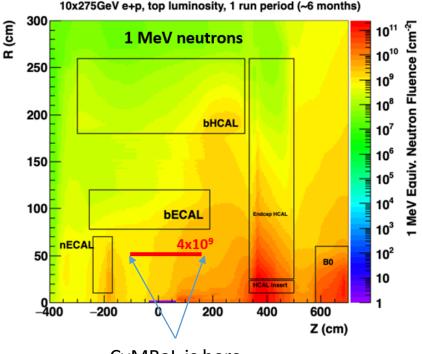
SVT MPGDs ToF (fiducial volume)

- On detector frontend electronics
 - \rightarrow FEBs + LV distribution + RDO interface cabling + cooling


5

Example of CyMBaL: one of the possible configurations under study

- Still under torment of optimization
 → Just a snapshot to give an idea
- 32K channels
- 128 256-channel FEBs
 - \rightarrow Only central detector FEBs visible
 - Peripheral FEBs in a row bellow
 - Or in a second row
- 32 1024-channel RDOs \rightarrow 4 FEBs per RDO
- Where to place RDOs not really clear
 - \rightarrow Electrical FEB-RDO interface : 5-6 m
 - 16 on either side of Barrel
 - \rightarrow Optical FEB-RDO interface : no limit
 - Attractive option

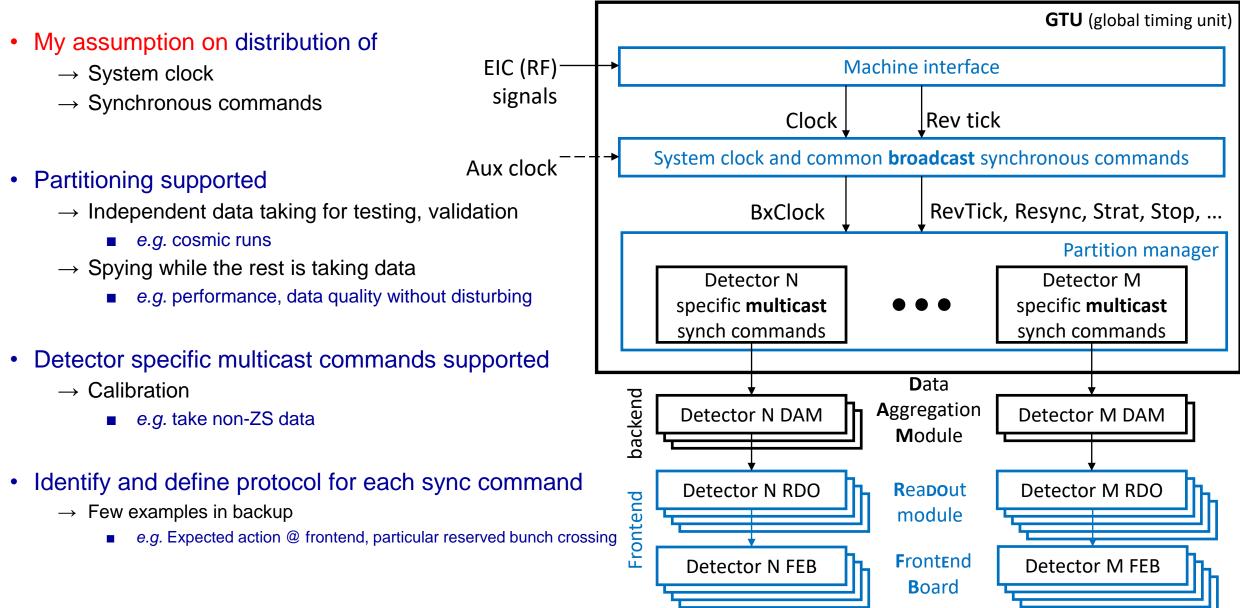

Inner detector fronted environment

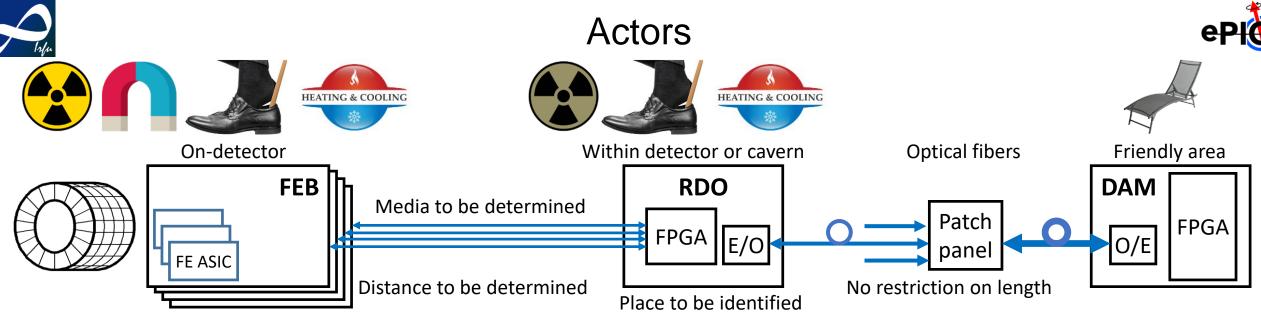
- Restricted material budget including for cooling
- Magnetic field
- Radiation
- Example of CyMBaL tracker environment
 - \rightarrow TID after 10 years :
 - \rightarrow Neutron fluence after 10 years:
 - \rightarrow 20 MeV proton flux:
 - \rightarrow Magnetic field:

10 krad 10¹¹ n_{eq} / cm² 100 particle / cm² / s 1.9 T

CyMBaL is here

- Most probably similar radiation and magnetic field environment for other MPGD detector frontends
- What about the radiation and magnetic field environment of other inner detector frontends?




Brief recap on EIC ePIC readout organization

ePIC readout organization

• FEB

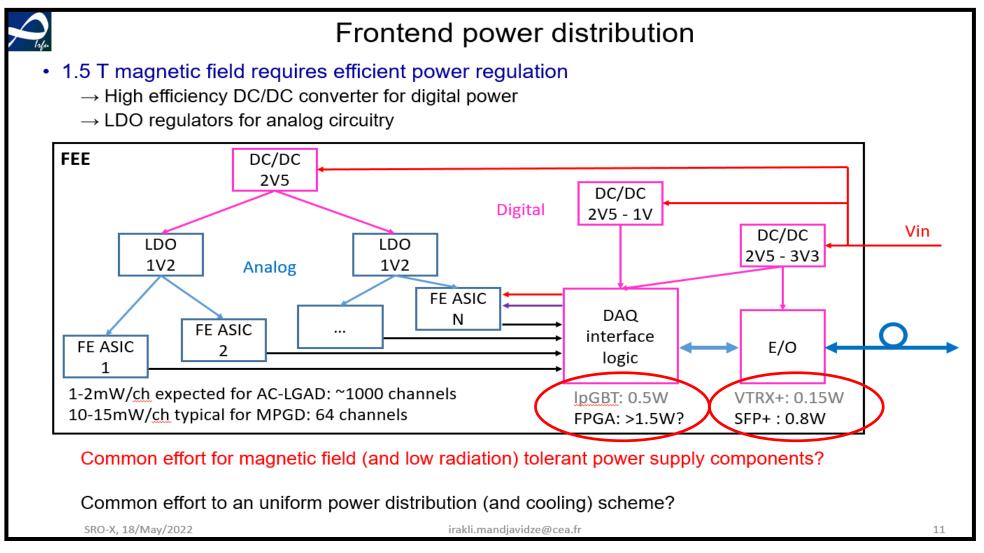
- $\rightarrow\,$ Number of rad-hard FE ASICs
- $\rightarrow\,$ As low power consumption as possible
- \rightarrow ~2 T magnetic field

• RDO \leftrightarrow FEB link

- $\rightarrow\,$ Downstream: clock & sync commands, configuration and monitoring requests
- \rightarrow Upstream: data, configuration and monitoring responses
- \rightarrow Over copper: 5-6 meters
 - RDO is in a restricted area inside the detector
 - Size / place / power
- \rightarrow Over fiber: no limit
 - RDO can be placed in a low restriction area in cavern
 - Or even omitted completely

• RDO

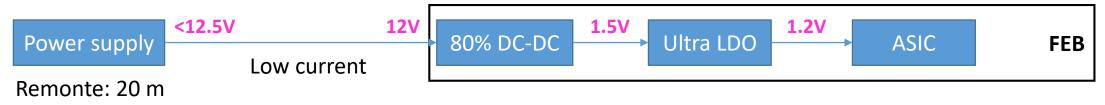
- $\rightarrow\,$ Middle to low-end FPGA
- $\rightarrow\,$ Distribute clock and synch commands to FEBs
- $\rightarrow\,$ Configure and monitore of FEBs
- $\rightarrow\,$ Receive data from several FEBs, format them and convey to DAMs
- DAM
 - → A powerful high-end FPGA capable to control few tens of RDOs and aggregate data from them
 - → O(10 Gbit/s) bidirectional serial link for clock, sync commands, data, configuration, monitoring



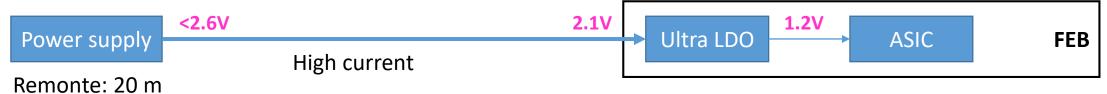
Power distribution: a reminder from the past

• Just for fun: presented on 18 may, 2022, during SRO-X workshop

→ https://indico.jlab.org/event/519/contributions/9563/attachments/7748/10855/220518_SroX_FrontEnd_IM.pdf



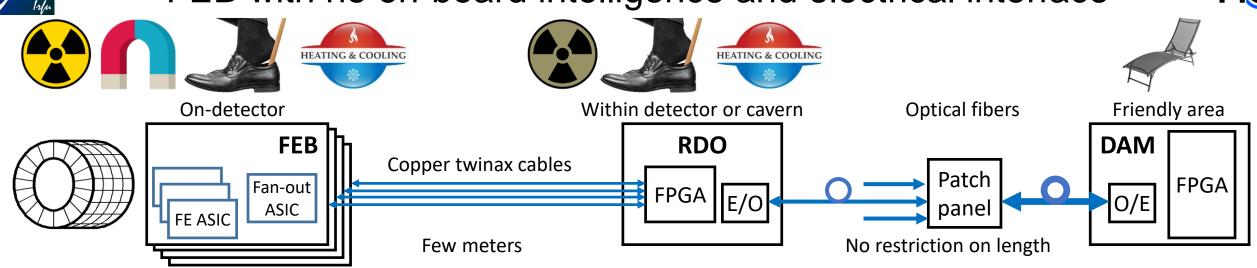
FEB power distribution options



- DC/DC-based LV distribution: to be magnetic field tolerant
 - \rightarrow Remote power supply distributes 12V with voltage drop over 20 m cables < 0.5V

- \rightarrow Higher efficiency, low cross-section power cables, less mW/ch
- \rightarrow DC/DC regulators might be bulky and a source of EMI
 - Space + extra material for shielding

- LDO-based LV distribution
 - \rightarrow Remote power supply distributes 2.1V with voltage drop over 20 m cables < 0.5V


- \rightarrow Lower efficiency, high cross-section power cables, more mW/ch
 - Space due to thick cables

FE organization options

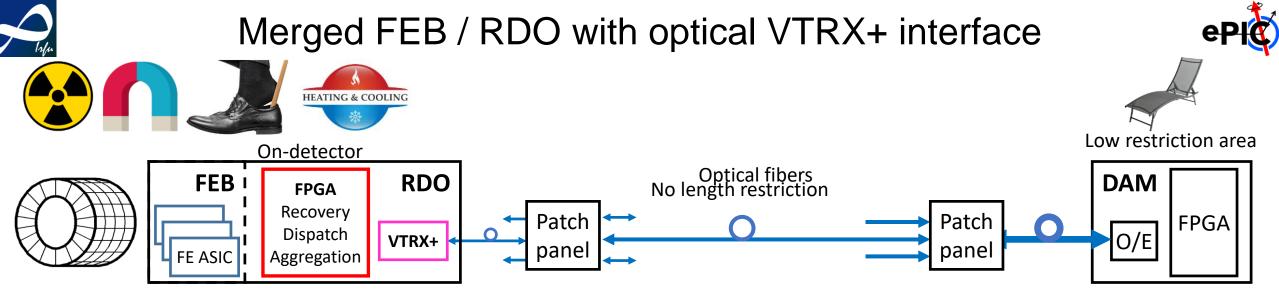
Passive electrical interface

- \rightarrow Downstream: clock, synch commands, asynchronous commands (I2C)
- \rightarrow Upstream: physics and calibration data, configuration and monitoring

• FEB

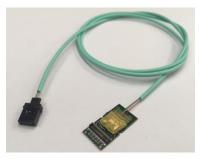
- \rightarrow Radiation hardened ASICs
- \rightarrow Low active component count: minimal power consumption
 - ~30-35 mW / channel
 - 1 mm² (DC/DC + LDO) or 5.6 mm² (LDO only) wires to power a FEB
 - Caution: DC/DC regulators may be bulky and source of EMI

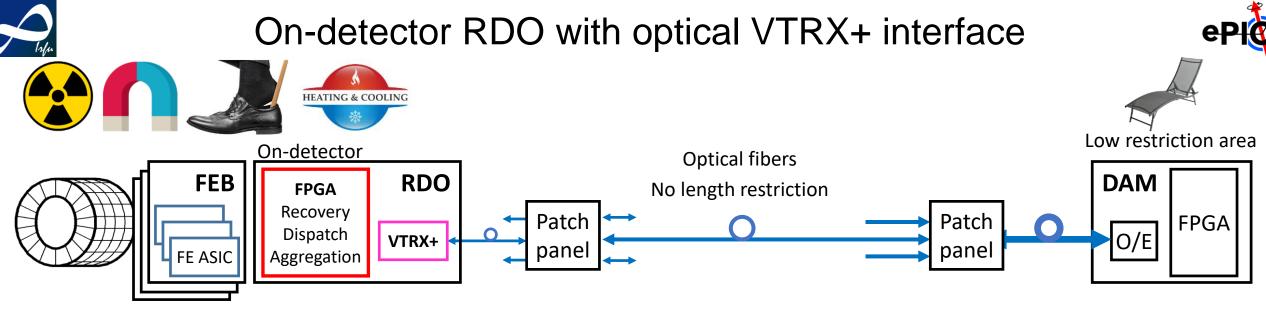
• RDO: Is there any suitable place ?


\rightarrow Overall integration issue

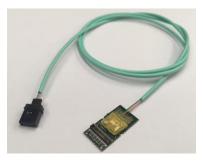
irakli.mandjavidze@cea.fr

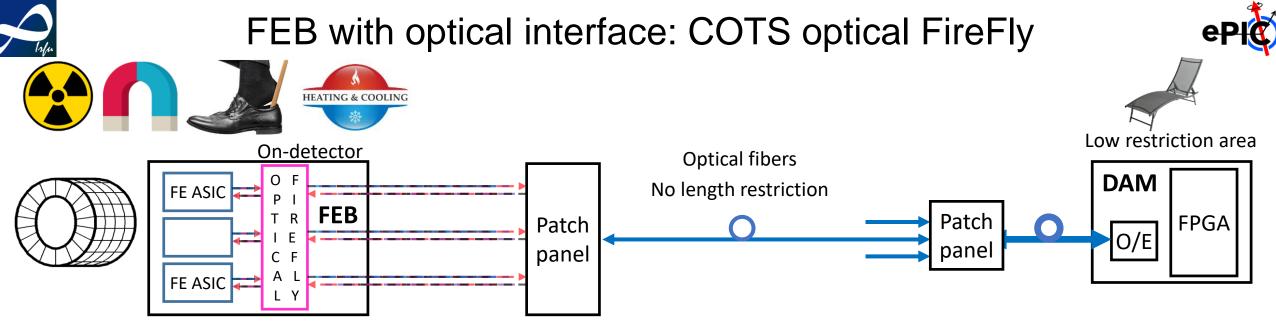
MPGD readout 7/Dec/2023 MPGD-DSC General


Passive 8-lane twinax cable FireFly from Samtec



- On-FEB RDO in a harsh environment
- FE ASICs are thought with "IpGBT / CERN" interfaces
 - → Separate lines for downstream interfaces: clock, synchronous commands, asynchronous configuration commands
 - → VTRX+ needs to be coupled with an on-RDO "intelligence" to recover this imbedded information
 - \rightarrow CERN has lpGBT; ePIC counts on FPGAs
- On FEB FPGA / VTRX+ combination
 - \rightarrow SEU effects need to be understood, acceptable failure rates to be agreed on
 - Estimation: 8h MTBF for entire CyMBaL with a low cost low profile Latice Nexus radiation tolerant FPGA
 - \rightarrow Worst power consumption scenario
 - Estimation: 45-50 mW / channel 50% increase compared to electrical interface
 - 1.5 mm² (DC/DC + LDO) or 8 mm² (LDO only) wires to power FEB
 - \rightarrow Cooling and its additional infrastructure !


CERN VTRX+



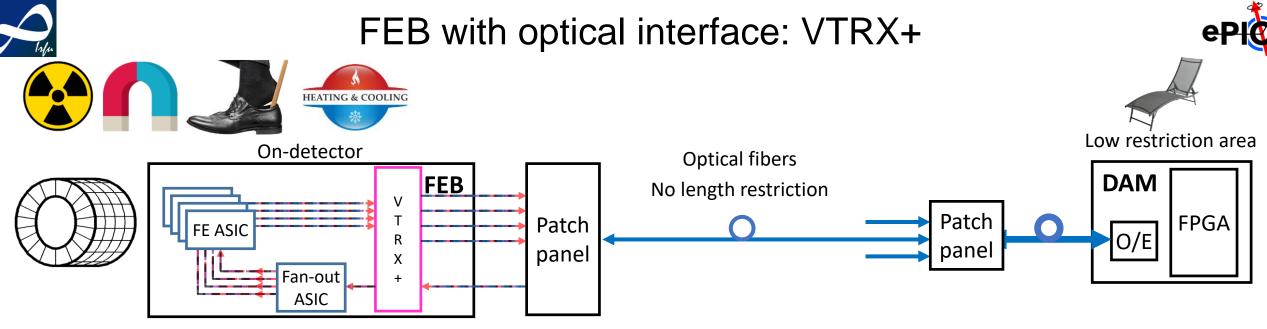
- On-detector RDO per detector module
 - \rightarrow 4 FEBs / RDO
 - Higher integration: More optimal use of RDO resources : FPGA logic + VTRX
 - \rightarrow Harsh environment
 - Same SEU preoccupation as for merged FEB / RDO
- Further studies needed to understand on-detector space constraints
 - \rightarrow ~11% more power compared to lowest power option of a FEB with electrical RDO interface
 - 33 37 mW / channel
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB
 - \rightarrow Cooling and its additional infrastructure !

CERN VTRX+

- FE ASICs are directly interfaced to 4-lane bidirectional parallel optic FireFly transceivers
 - → Requires an "innovative" ASIC interface: Rx line encoding clock and data (sync & async commands)
 - \rightarrow Plus extra handy features:
 - A low speed embedded ADC for environmental monitoring
 - A GPIO outputs for on-board control

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Low active component count: minimal power consumption
 - ~35-37 mW / channel 15% increase compared to pure electrical interface
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB


• No RDO layer !

irakli.mandjavidze@cea.fr

MPGD readout 7/Dec/2023 MPGD-DSC General

Optical 4 Tx & 4 Rx FireFly from Samtec

• FE ASICs are directly interfaced to VTRX+

- \rightarrow Downlink with embedded clock / sync / async data distributed with high fidelity fan-out
- \rightarrow Requires an "innovative" ASIC interface
 - Working on CDR circuitry for Salsa

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Minimal power consumption after electrical interface option: only VTRX+ consumption added
 - ~ 32-35 mW / channel 8% increase compared to pure electrical interface
 - 0.9 mm² (DC/DC + LDO) or 5.8 mm² (LDO only) wires to FEB

• No RDO layer !

irakli.mandjavidze@cea.fr

CERN VTRX+

Outcome: mostly questions

• Our knowledge of the ePIC Inner detector in general and its MPGDs in particular is not mature

- \rightarrow Can the same FEB form-factor be used for all MPGDs ?
- \rightarrow Is the same integration level (256-channel FEB) necessary, adapted, handy to all MPGD detectors ?
- \rightarrow Do we have the place to house ~600 FEBs on detector ?
 - 128 for CyMBaL; 384 for µRWell-BOT; 80 for µRWELL-ECT
- Study of the FEB option with optical interface
 - \rightarrow Can we enhance Salsa with clock-data recovery mechanism ?
 - \rightarrow What will be an error rate due to the use of the COTS e/o transceiver in the mild ePIC radiation environment?
 - \rightarrow How the cooling can be organized to avoid the bulky radiator ?
 - In contact with Samtec to understand the possibility of the use of the optical FireFly components
- Studies are needed and ongoing within Elec/DAQ and Integration groups
 - \rightarrow Can we use FPGAs within the inner detectors ?
 - \rightarrow Can we use DC/DC regulators within the inner detectors ?
 - \rightarrow What are the COTS components compatible with the low ePIC radiation environment ?
 - → Can we count on ePIC-wide access to CERNs radiation hardened, magnetic field tolerant powering components ?
 - \rightarrow How close can be RDOs placed to FEBs ?
 - \rightarrow How close can be LV power supplies placed to FEBs ?
 - \rightarrow How the services can be delivered to frontend ?

Next steps

- Functional organization can be a subject for next presentation
 - \rightarrow Synchronization
 - \rightarrow Data collection
 - \rightarrow Calibration
- Meantime collect the relevant information
 - \rightarrow Channel hit rate
 - \rightarrow Channel charge
 - \rightarrow Amount of data
 - \rightarrow Calibration
 - \rightarrow Better knowledge of mechanical constraints
 - \rightarrow Adding more questions
 - \rightarrow Answers on some of the questions from the list