

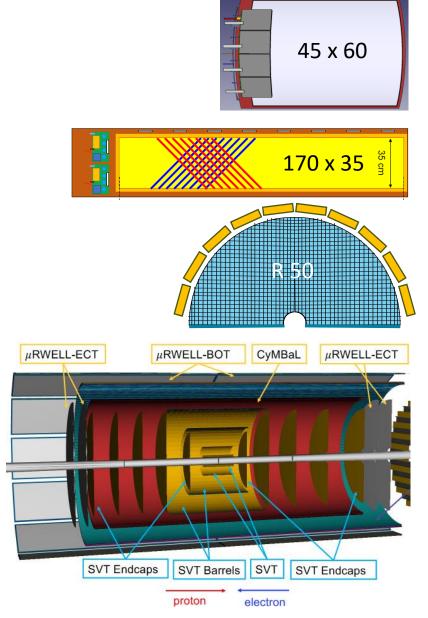
On FEBs for ePIC MPGDs Intro for technical and organizational choices

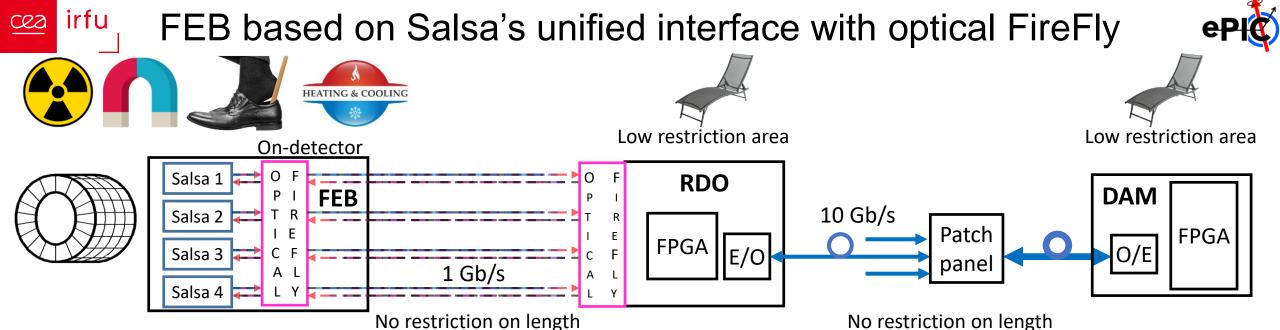
Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France

MPGD-DSC general meeting 7/Nov/2024

Outlook


- Reminder of the readout architecture
- Evolution since the Tracking (March) and eDAQ (June) TDRs
 - → Generalization of VTRX+
 - → Strong move towards IpGBT
- Impact on MPGD FEBs and readout
- How to proceed ...
- Summary



Reminder on MPGD sub-systems and channel counts

- Cylindrical Micromegas Barrel Layer : CyMBaL : ~30k channels
 - → 32 tiles of 1024 channels each
- μRWELL Barrel Outer Tracker : μRWell-BOT : ~100k channels
 - → 24 modules of 4 096 U-V strips each
- μRWell End Cap Tracker : μRWell-ECT : ~30k channels
 - → 8 half-disks of 4 000 X-Y strips each
- ~160k-channel heterogeneous system
 - → Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - → Use same frontend ASIC
 - Salsa under development
 - → Share frontend design between groups
 - Adapt form factor if needed

• FEB:

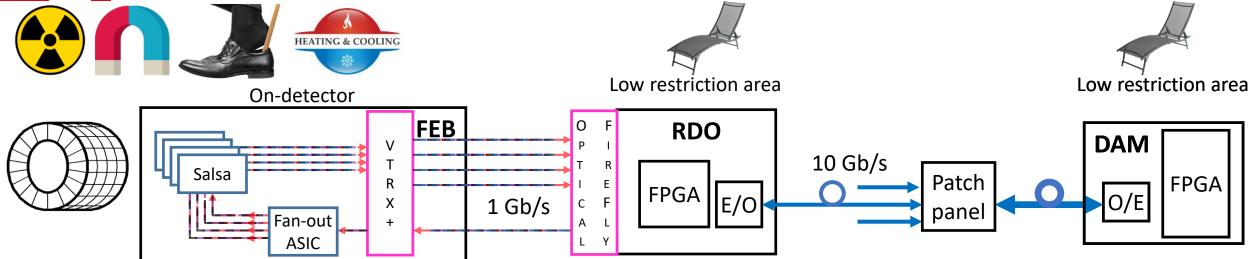
- → ASICs are directly interfaced to 4-lane bidirectional parallel optic FireFly transceivers
- → Requires an "innovative" ASIC interface:
 - Rx line encoding clock and data (sync & async commands)
 - Plus extra handy features:
 - A low speed embedded ADC for environmental monitoring
 - A GPIO outputs for on-board control

Optical 4 Tx & 4 Rx FireFly from Samtec

- RDO: common hardware with adaptation based on COTS FireFly transceivers from Samtec
 - Four 4-lane bidirectional FireFly components are needed to serve 4 FEBs
 - → Placed anywhere in user friendly area
 - No particular restrictions on power consumption, cooling infrastructure, radiation, magnetic field

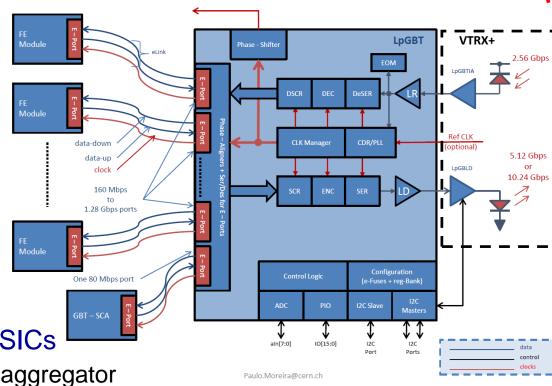
The VTRX+ story

- CERN low profile low power electrical / optical transceiver
 - → Developed for HL-LHC upgrade
 - \rightarrow 1 downlink : up to 2.5 Gbit/s
 - → 4 uplinks : up to 10 Gbit/s each
 - → Radiation hard
 - → Fragile
 - → One shot production

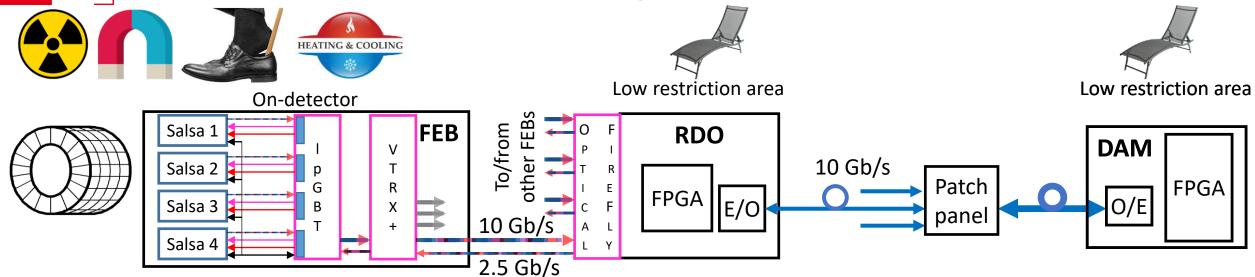


- → Rise a hand if ABSOLUTELY needed
- → MPGD response after in-depth study : cannot pronounce on ABSOLUTE but can be a missing opportunity
- → Project response to MPGD response no VTRX+ for MPGDs
- August 2024: push from EIC project and ePIC to generalize its use for inner detectors
 - → MPGD response : ~1 000 units including spares and prototyping

- FEB
 - → Salsa receives embedded clock / sync / async data over the unified RX interface
 - VTRX+ RX serial link to Salsas via a rad-hard fan-out ASIC
 - → Salsa sends physics, monitoring and slow control data over a single TX line
 - One VTRX+ TX serial link per Salsa
 - → All ASICs are radiation hard


- RDO: common hardware with adaptation based on COTS FireFly transceivers from Samtec
 - Four 4-lane bidirectional FireFly components are needed to serve 4 FEBs
 - → Placed anywhere in user friendly area
 - No particular restrictions on power consumption, cooling infrastructure, radiation, magnetic field

The IpGBT story


- CERN low power gigabit transceiver
 - → Developed for HL-LHC upgrade
 - \rightarrow 1 downlink : up to 2.5 Gbit/s
 - → 1 uplinks : up to 10 Gbit/s each
 - → Control and aggregate data from a number of ASICs
 - → 40 MHz clock domain with 5 ps clock jitter
 - → Radiation hard
 - → One shot production
- Summer 2024 : ePIC frontends using CERN-flavored ASICs
 - → Move to use IpGBT as on-board "transparent" controller-aggregator
 - Avoiding the use of FPGAs on frontends
 - \rightarrow ~100 MHz / 5 * 2 = ~40 MHz within the narrow locking range of lpGBT
- September 2024: ePIC eDAQ WG asks who can and is interested to use IpGBT
 - → MPGD response : IpGBT is certainly an interesting and attractive option
 - https://indico.bnl.gov/event/25106/contributions/97861/attachments/57983/99568/241017_IM_lpGbt2Salsa.pdf

FEB based on Salsa's heterogeneous interface with IpGBT

- 256-channel FEB
 - → Salsa receives recovered clock and sync data from an IpGBT eLink group
 - → Salsa sends physics, calibration and monitoring data to a number of IpGBT lines of the eLink group
 - → Salsa's are configured over daisy chained I2C interface from IpGBT
 - → lpGBT provides a bidirectional interface between 4 Salsas and remote FPGA on RDO
 - → lpGBT provides digital and analog control of the board GPIO, ADC
 - → VTRX+ is used with only one TX line
 - → All ASICs are radiation hard
- 1024-channel RDO: common hardware with adaptation based on FireFly transceivers from Samtec
 - Single 4-lane bidirectional FireFly is enough to serve 4 FEBs
 - → Placed anywhere in user friendly area
 - No particular restrictions on power consumption, cooling infrastructure, radiation, magnetic field

160K-ch MPGD readout configurations and component count

FEB with direct Salsa-VTRX+ interface

FEB with lpGBT-VTRX+ interface

FEB with direct DAM interface

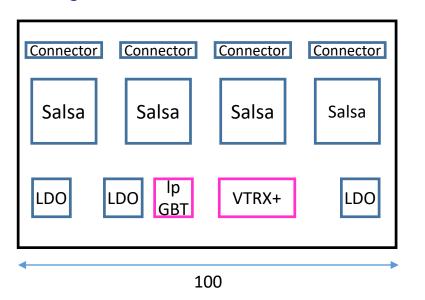
High density 10 Gb/s grade

No RDOs to design, produce, install, debug and maintain

4 times more 12-lane FF pairs

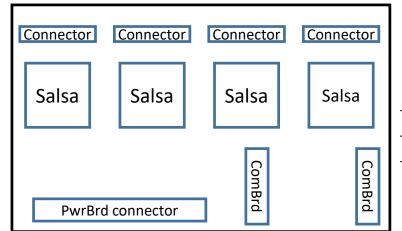
2 times more DAMs

How to proceed ...

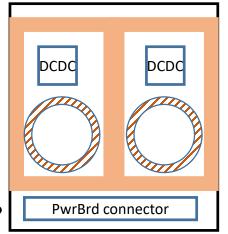

- Salsa team still needs to work on details
 - → Harmonizing unified and heterogeneous interfacing with 100 MHz EIC and 40 MHz CERN clock domains
- In parallel, concerned MPGD groups can meet during a session dedicated to FEBs and readout
 - → Status and more in depth discussion of technical questions
 - → Update on environment especially space constraints
 - → Update on acceptable FEB form-factors
 - Channels per FEB
 - Size
 - → Discussion on power and perhaps on cooling
 - https://indico.bnl.gov/event/25107/contributions/97957/attachments/58092/99805/241024_IM_PowerAndVtrx.pdf
 - → FEB organization : single board or mother-board + mezzanine
 - → How the work can be shared

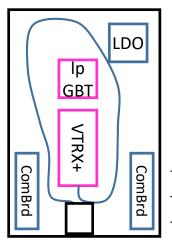
U Illustration of CyMBaL lpGBT-based FEB organization options

Single board

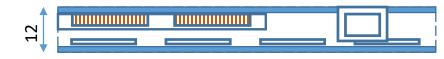


- → Complex high density high speed
- → MPGD-specific form factor


- → DC/DC mezzanine
- → 2 T tolerant low EMI
- → Common to all MPGDs ?


9

Mezzanine approach



- → FEB mezzanine
- → Low density low speed
- → MPGD-specific form factor

- → Communication mezzanine
- → high density high speed
- → Common to all MPGDs ?

Summary

- CERN-proven components become available for MPGD frontends
 - → VTRX+, IpGBT, DC/DC regulators
 - → Frontend design and readout architecture may benefit from this favorable evolution
 - Especially, if an intermediate control and aggregation RDO stage could be avoided
- A dedicated "electronics" session would be welcome between concerned groups and people
 - → Status update and technical discussion
 - → Possible discussion on work sharing
 - FEB design
 - · Saclay has an expertise
 - Possibly communication mezzanine design
 - Saclay has an expertise
 - Possibly DC/DC mezzanine design
 - Saclay expects support from groups actively involved in powering studies
 - Power distribution
 - Saclay has an expertise
 - Colling
 - No particular studies have been conducted at Saclay
 - Other related services : e.g. slow control and monitoring
 - → If found relevant, can MPGD DSC organize the session?