Update on IP8 DD4hep Simulation

Jihee Kim (jkim11@bnl.gov) 2023/11/13

What's New

- Updated Far-Forward layout
 - Added B0 spectrometer (tracker + electromagnetic calorimeter) to tag nuclear breakups such as protons and photons
 - Made OMD a bit larger to get better acceptance assuming they are sitting regardless of beampipe design
- Updated incoherent tagging power
 - Included B0 spectrometer and (a bit larger) OMD

IP8 Far-Forward Layout

Implemented in IP6 detector configuration

Approach – Acceptance

- Single particle simulation
 - B0 Spectrometer (Tracker + Calorimeter) focusing $5 < \theta_{MC} < 20$ mrad
 - \circ Proton energy: 80 GeV < E_p < 120 GeV
 - Photon energy: 1 GeV < E_{γ} < 40 GeV *running*
 - Off-Momentum Detector focusing $0 < \theta_{MC} < 5$ mrad
 - Proton energy: 123.75 GeV (45%) < E_p < 151.25 GeV (55%)

BNL EIC 2nd Detector Group Meeting – J. KIM

B0 Tracker + Calorimeter

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) $0 < \theta_{MC} < 5$ mrad

About 64.7 % to 76.92 % events were accepted by stretched plane Hadron lattice in simulation set to be 275 GeV proton (Clipping occurs in Quadrupoles for protons)

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) 0 < θ_{MC} < 5 mrad

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) $0 < \theta_{MC} < 5$ mrad

Approach – Incoherent Tagging Power

• Used **BeAGLE** 350k events with $1 < Q^2 < 10$

- **ePb 18×110 GeV incoherent diffractive** $J/\psi(\mu\mu)$ **events** $ePb \rightarrow e' + J/\psi(\mu\mu) + X$ (S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1-9.hepmc)
- Through afterburner : applied crossing angle 35 mrad and beam parameters as in IP6 eAu from EIC CDR table 3.5
- Discarded events having more than one electrons in final state within η < -1
- Calculated 10σ radial cut based on IP6 eAu from EIC CDR table 3.5
 - $R_{10\sigma} \sim 3.89526 \text{ mm}$
- Tagging power *no central detector yet*
 - B0 Tracker at least two out of four layers have registered RAW hits
 - OMD all four layers have registered RAW hits
 - o ZDC any registered RAW hits in either ECAL and HCAL
 - RPSF one layer (closet to 2nd focus) has registered RAW hits outside 10σ

Nuclear Breakups Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

	Nuclear Breakups at Final State	Number of Events
Generated Level	Only Neutrons	7.55 %
	Only Protons	0.0 %
	Only Photons	3.23 %
	Neutrons + Protons	3.28 %
	Neutrons + Photons	43.97 %
	Protons + Photons	2.24 %
	Neutrons + Protons + Photons	39.73 %

BNL EIC 2nd Detector Group Meeting – J. KIM

t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Coherent diffractive minima

Nuclear Breakups Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Remaining events have higher mass nuclear remnants and low number of particles in final state

Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

BNL EIC 2nd Detector Group Meeting – J. KIM

Summary and What Are Next Steps

- Added B0 spectrometer (tracker) to tag protons *Need to look deeper*
- Given current layout, looked at incoherent event on tagging power with $1 < Q^2 < 10$ and t < 0.2
 - Tagging power ~ 96%, 98%, and 99% at t ~ 0.02, 0.05, and 0.1
- Keep looking carefully in B0 and RPSF
- Look at B0 photon acceptance/tagging
- Add simplified beampipe in DD4hep to quantify impact on acceptance/efficiency
- □ *Access true particle ID to cluster raw hits

BackUp Slide

Final-state Electrons

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Within BeAGLE incoherent J/ ψ events, there can be multiple electrons in final-state If there are multiple electrons, take electron having less than -1 in rapidity However, more than one electron heading backward ($\eta < -1$), then discard for now

BNL EIC 2nd Detector Group Meeting - Jihee KIM

Clipping on Acceptance of Far-Forward

Kindly Provided by Alex Jentsch using EicRoot Simulation Event Display

Reference from https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf

123.75 - 151.25 GeV Protons

DD4hep simulation event display was not successful...

IP8 Far-Forward Detectors

Implemented in IP6 detector configuration

- B0 Spectrometer (Tracker + Calorimeter) *flipped*
 - 4 tracker planes and 10 cm long crystal module
 - Placed at z = 0.06 m

• Off Momentum Detector (OMD)

- o 40 cm tall and 30 cm wide
- Placed at (x, z) = (0.723133 m, 25.9359 m) and (0.702435 m, 27.9363 m)

o Zero Degree Calorimeter (ZDC)

- \circ 2 meter-long and 60 \times 60 cm²
- Placed at (x, z) = (1.3798 m, 35.4293 m front)

• Roman Pot at Secondary Focus (RPSF)

- o 14 cam tall and 26 cm wide
- Placed at (x, z) = (1.00603 m, 43.9339 m) and (1.03788 m, 45.4337 m)

23

Approach – Acceptance

- Far-Forward region
 - Particles with $\theta < \sim 37 \text{ mrad} (2.1^{\circ})$
 - Tag charged hadrons (protons) or neutral particles (neutrons, photons)
- Single particle simulation
 - **B0 Tracker + Calorimeter**
 - Proton energy: 25 GeV < E_p < 55 GeV and 5 < θ_{MC} < 20 mrad
 - Proton energy: 80 GeV < E_p < 120 GeV and 5 < θ_{MC} < 20 mrad
 - Photon energy: GeV < E_{γ} < GeV and 5 < θ_{MC} < 20 mrad
 - Off-Momentum Detector for detecting protons from nuclear breakup
 - Proton energy: 123.75 GeV (45%) < E_p < 151.25 GeV (55%) and **0** < θ_{MC} < **5** mrad
 - Zero Degree Calorimeter for detecting photons and neutrons
 - Neutron energy: $E_n = 275 \text{ GeV} (*\theta_{MC} < 10 \text{ mrad})$
 - Roman Pot at Secondary Focus for detecting charged particles from nuclear breakup
 - Proton energy: $E_p = 275$ GeV and $0 < \theta_{MC} < 5$ mrad

BNL EIC 2nd Detector Group Meeting – J. KIM

Single Neutron E = 275 GeV $0 < \theta_{MC} < 5$ mrad

Pb/Scint and Pb/Si have 10 cm amd 1 cm segmentation respectively Neutron penetrate a few interaction lengths before shower develops *Raw Hits*

BNL EIC 2nd Detector Group Meeting – J. KIM

Single Proton E = 275 GeV $0 < \theta_{MC} < 5$ mrad

About 95.4 % events were accepted and observed losses at higher theta (polar angle) Clipping occurs in Quadrupoles for protons

BNL EIC 2nd Detector Group Meeting – J. KIM

