

ePIC Performance on Coherent J/ψ Diffractive Pattern

Cheuk-Ping Wong

11-13-2023

Tracking Resolutions

Last Update

Tracking resolution barely improves from reducing the thickness
of the silicon wafer

 \rightarrow Suspect that the service parts dominate the material budget and highly affect the tracking resolution

 Service/support parts of the forward and backward disks include aluminum and carbon fiber (CF), with thicknesses of 150um and 120um, respectively

 \rightarrow Change the thicknesses of aluminum and CF to 5um

Forward

Barrel

Backward

t Resolutions

- The service parts dominate the material budget for the tracking detector
- Reducing the material budget of the service parts improves the momentum resolution, but it is still not good enough

0.02

0

4×10⁻ 3×10⁻ 8

0.04

0.08

0.06

0.12

Itl [GeV²]

0.1

Ways to Improve Tracking Resolution

- ✓ Material budgets
- Pixel pitch/size
- Disk placements
- More disks
- ✓ Magnetic field

Muon ID

Strategy for muon ID smearing

- What is the minimum muon momentum to reach beyond the EMCal?
- Muon ID efficiency
- Muon ID fake rate

BELLE2 KLM Performance

 $0.82 \le \theta < 1.16 \text{ rad}, \text{muonID} > 0.9$

- min µ p=0.6 GeV
- Efficiency = 89% for p ≥ 1 GeV
- Fake rate 1.3% for $p \ge 0.7 \text{GeV}$
- Fake rate $\leq 3.8\%$ for $p \leq 0.7 \text{GeV}$

https://docs.belle2.org/record/2895/files/Lepton_identi fication_Moriond_2022_v2.pdf

https://arxiv.org/pdf/1011.0352.pdf

11

Survival Muon Selection

P_{II} [GeV]

- Survival muon is defined as the muon that can reach the Hcal, where the muon ID detector is supposed to be
- If the last hit of a muon is inside the Hcal or beyond, the muon survives
 - if abs(hit.z)>=150cm, survived
 - If abs(hit.z)<150cm and r>180cm, survived
- Working progress

Summary

- The service parts dominate the material budget for the tracking detector
- Reducing the material budget of the service parts improves the momentum resolution, but it is still not good enough
- Started implementation of muon ID smearing

Backup

Simulation Setup

Sartre

- eAu at 18x110 GeV
- $Q^2 \ge 1 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

Data Selections and Reconstructions

Single electron selection

If the electron $\eta < -1.5$, use Ecal energy instead of momentum from tracking

J/ψ reconstruction

- |pid| = 11
- Opposite charges cut on dilepton pair
- If the reconstructed mass is within 2 standard deviations, the e+ and e- are labeled as " J/ψ decayed" dielectrons

Q²

- Scattered electrons must be negatively charged
- " J/ψ decayed" electrons are excluded
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5$
- Require information of the proton beam
- Better t resolutions

BELLE2 Detector

.

