20231120 M.Borri

Flexible Printed Circuit (FPC) for ePIC-SVT: Towards specifications

WP3: Electrical interfaces

SVT configuration – an FPC prospective

Current and future

	IB	r [mm]	l [mm]	I [mm] X/X0 %				
	L0	36	270	0.0	5			
	L1	48	270	0.05				
[L2 120		270	270 0.0				
LAS T5	ВА	RREL	r (mm	r [mm] 270 420			X/X0 %]
P	Lay	/er 3	270				0.25	1
	Lay	/er 4	420				0.55]
LAS T5	DISKS +		+z [mm]	z [mm] -z		r_	out [mm]	X/X0 %
P	Disk 0 2		250	50 -2		24	0	0.25
	Disk 1 4		450	-4	150	420		0.25
	Disk 2 7		700	-6	650	420		0.25
	Disk 3 1		1000	-8	350	420		0.25
	Disk 4 1		1350	-1	050	42	20	0.25

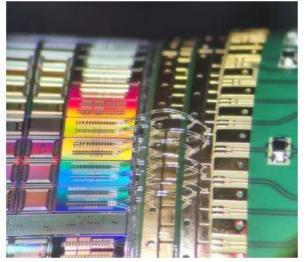
J. Glover

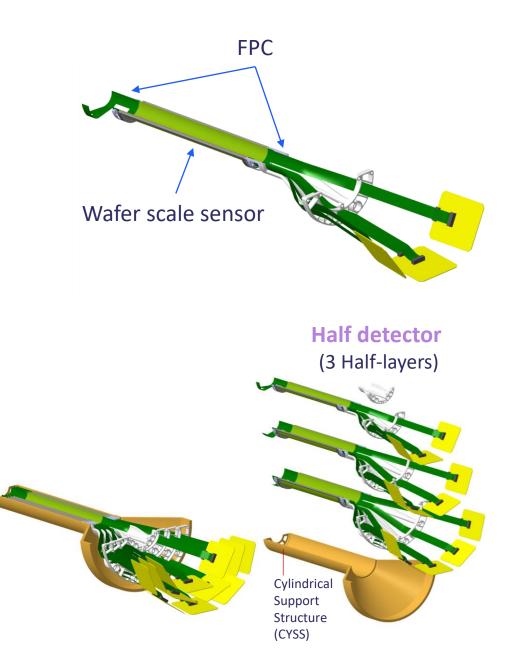
Current and future tracking and vertexing detectors 7 Nov 2023

Science and Technology Facilities Council

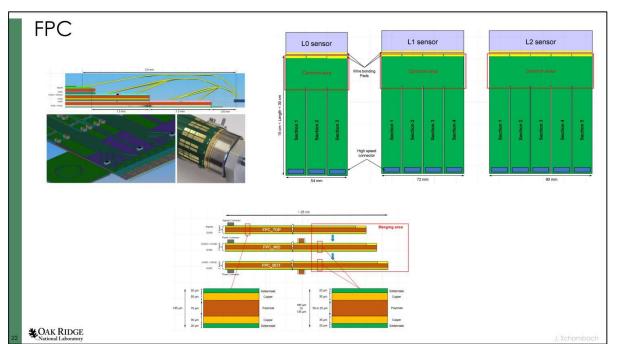
- L0,L1,L2 only 50um Si:
 - No FPC overlapping sensor;
- L3 and all disks have the same material budget;
- This material budget is referenced to ITS2 Inner barrel:
 - Al FPC is overlapping the sensor;
- L4 allows for about x2 the material budget of layer 3 and disks:
 - To keep FPC constrains (e.g. material budget) as in L3 and disks;

	imated contributions of	the Inner Layer S	stave to the r	naterial b	udget.
Stave element	Component	Material	Thickness (µm)	$\begin{array}{c} X_0 \\ (\mathrm{cm}) \end{array}$	X_0 (%)
HIC	FPC Metal layers	Aluminium	50	8.896 28.41	0.056 0.035
	FPC Insulating layers	Polyimide	100		
	Pixel Chip	Silicon	50	9.369	0.053
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	25	28.41	0.003
	Cooling fluid	Water		35.76	0.032
	Carbon plate	Carbon fibre	70	26.08	0.027
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.018
Total					0.26

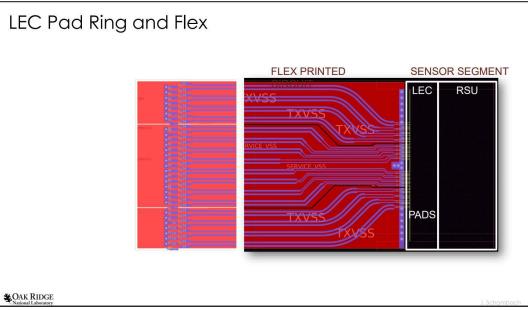

ITS2 IB stave length ~270mm, width ~1.5cm, ALPIDE PWR <40m W/cm2 $\,$

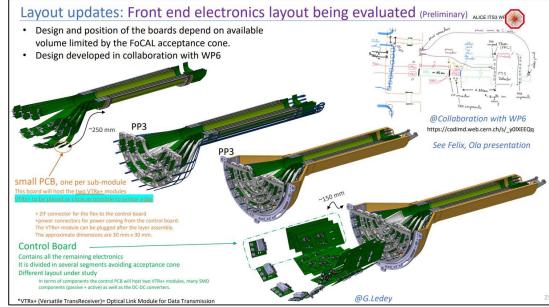

IB L0, L1, L2 - FPC

- L0,L1,L2 only 50um Si:
 - No FPC overlapping sensor;
 - No restrictions in no. of conductive layers in the FPC;
- FPC interconnected via wire-bonding to sensor end caps:
 - Left end cap: data, ctrl, clk, pwr, gnd;
 - Right end cap: pwr, gnd;
- Is the EIC Inner barrel an identical copy of ALICE ITS3?
- Can we power from the right and left end caps like in the EIC?



FPC wire bonded to curved sensors



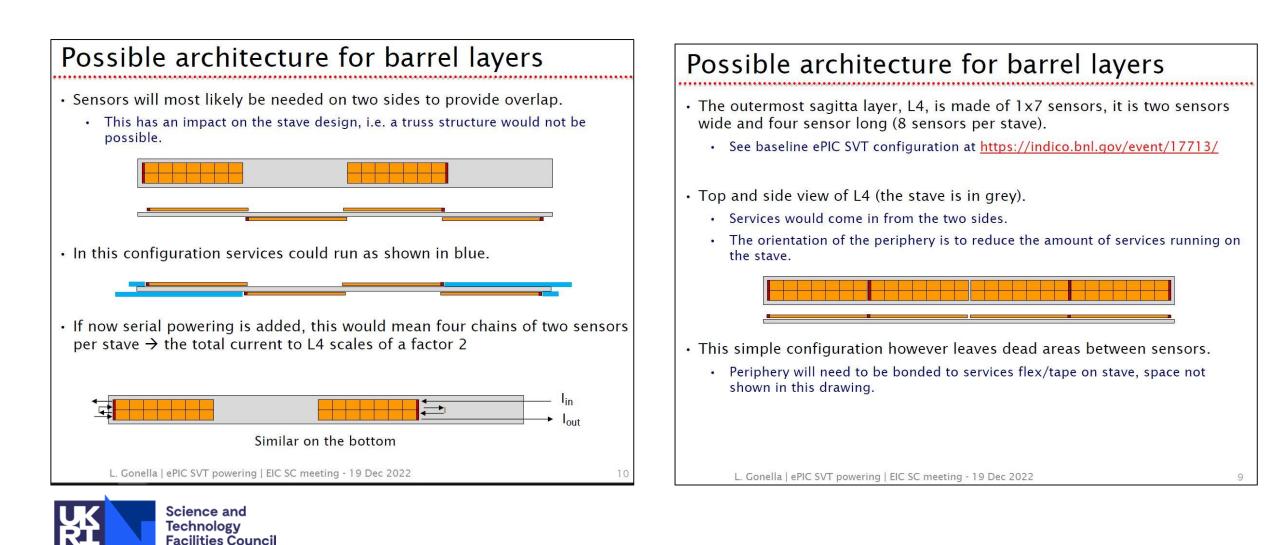


IB L0, L1, L2 – FPC update

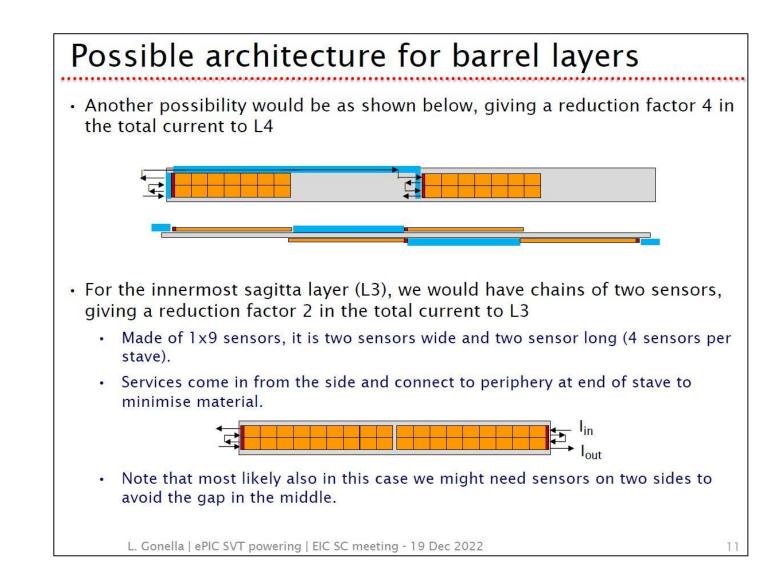
OB – FPC

- L3 material budget is referenced to ITS2 Inner barrel:
 - Al FPC is overlapping the sensor;
- L4 is ~x2 L3 material budget
- OB staves are populated by the same type of LAS
 - One option was also considering populating the staves with LAS with different multiplicities.
 Discard?
- Configuration A:
 - L3: LAS T5 x5, length 540mm
 - L4: LAS T5 x8, length 840mm
- Configuration B:
 - L3: LAS T6 x4, length 520mm
 - L4: LAS T6 x6, length 780mm
- Baseline design assumes that LAS are installed on the

J.Schambach Epic Svt 20230928

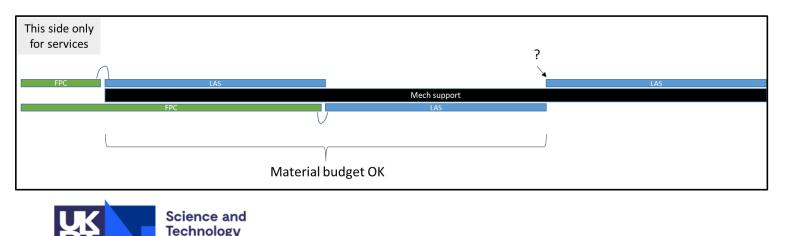

Area (m^2) theta (deg) Laver r (mm) 1 (mm) X/X_0 (%) eta n rsu T6 **T5** 1.96 LO 37.4 260 0.05 0.06 16.04 49.8 260 0.05 0.08 20.97 1.69 IB L1 12 124.5 260 0.05 0.20 43.77 0.91 L3 260 520 0.25 0.85 45.00 0.88 24 OB Opt 1 36 14 390 780 0.55 45.00 0.88 1.91 6 520 0.25 0.88 0.85 L3 270 46.08 24 4 OB Opt 2 14 420 780 0.55 2.06 47.12 0.83 36 271 542 0.25 0.92 45.00 0.88 L3 25 OB Opt 3 14 422 845 0.55 2.24 45.00 0.88 39

Proposed new layout based on ITS3 ER2 Sensor


540mm ~108mm L3 LAS LAS LAS LAS LAS x5 T5 L3 LAS LAS LAS LAS LAS LAS LAS LAS x8 T5 840mm

OB – Baseline options for module loading (1/2)

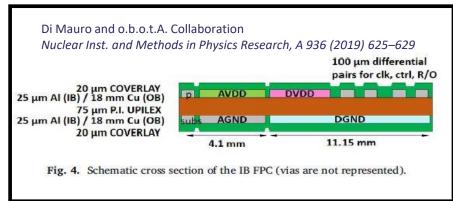
OB – Baseline options for module loading (2/2)



Disks – FPC & loading stave (or disk) from front & back sides

- Material budget for L3 and disks achieved by:
 - Al FPC w only 2 layers [it overlaps the sensor]
 - 50um thin and low pwr sensor
 - light support and cooling structure
- Issue to stay within material budget if:
 - access to sensors services only from 1 side of the support structure
 - there are more than 2 LAS in sequence

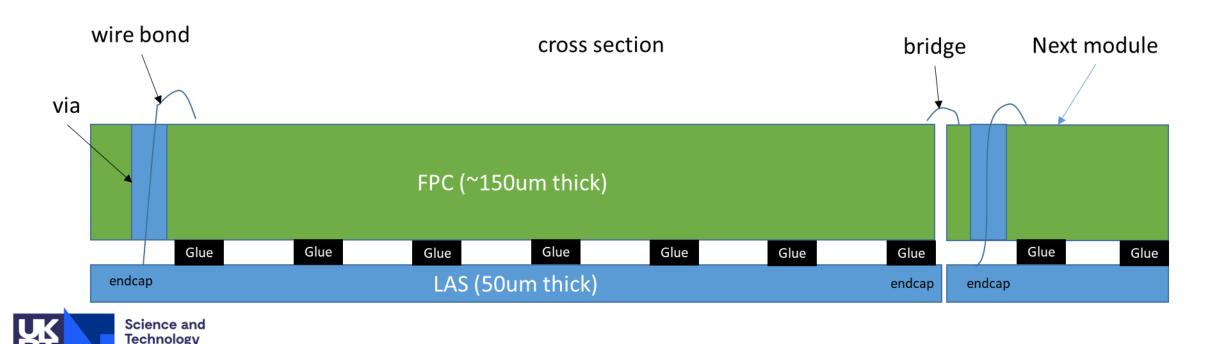
Facilities Council


- Note:
 - Material budget non-uniform also w only 2 LAS
 - good or bad?

B Abelev et al and The ALICE Collaboration 2014 J. Phys. G: Nucl. Part. Phys. 41 087002

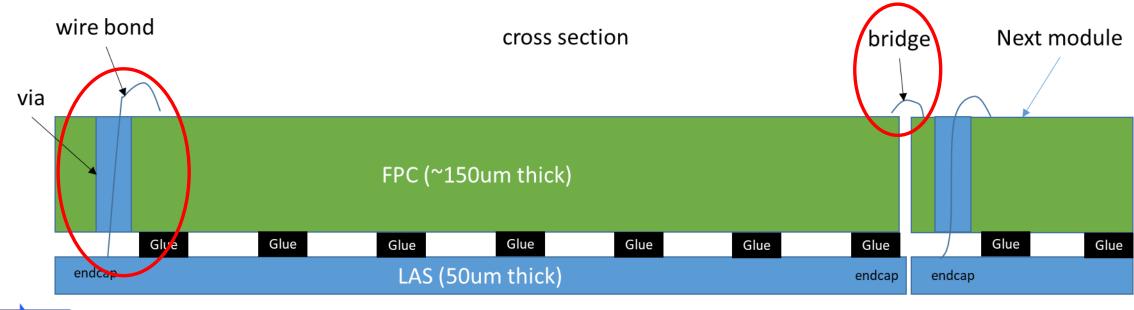
Stave element	Component	Material	Thickness (µm)	$\begin{array}{c} X_0 \\ (\mathrm{cm}) \end{array}$	X_0 (%)
HIC	FPC Metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Pixel Chip	Silicon	50	9.369	0.053
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	25	28.41	0.003
	Cooling fluid	Water		35.76	0.032
	Carbon plate	Carbon fibre	70	26.08	0.027
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.018
Total					0.262

ITS2 IB stave length ~270mm, width ~1.5cm, ALPIDE PWR <40m W/cm2



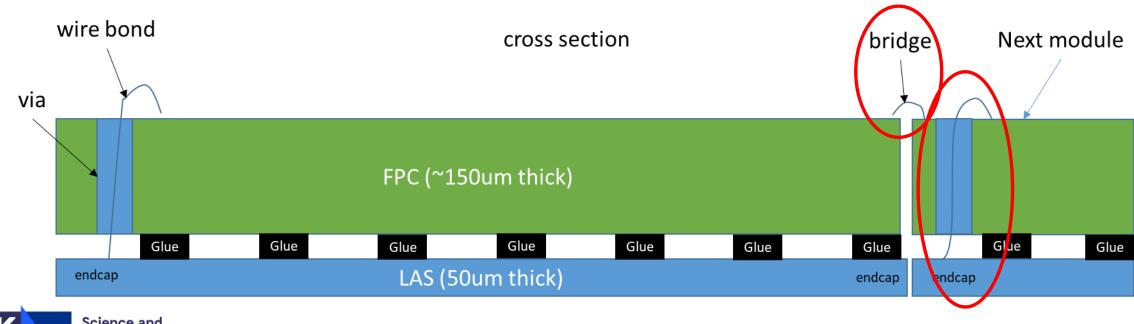
ALICE ITS2 approach

- Modularity is always welcome
- 1 FPC per 1 LAS;
- FPCs bridged at stave loading;

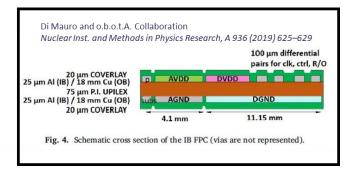

Facilities Council

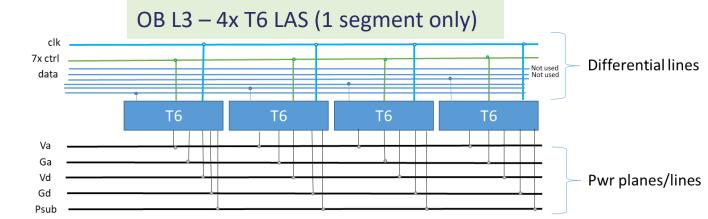
- Tail FPC could contain IC for data transmission, length to be defined
 - Cooling might be required, see FPC w integrated micro-channels.

ALICE ITS2 - Feasibility considerations: pwr planes

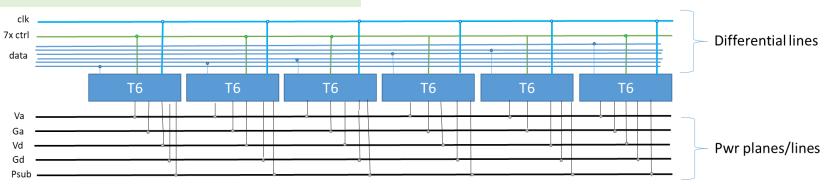

- Bottlenecks for the cross section of the pwr planes:
 - Vias for the wire bonding;
 - Module to module bridges;
- Is the sLDO the solution to this problem?

ALICE ITS2 - Feasibility considerations: wire-bonding


- The left encap of the LAS will be densely populated with wires:
 - to connect FPC to the sensor.
 - to connect bridge the FPCs.
- Is there sufficient space to do this? Could the pads be shifted on LAS design?

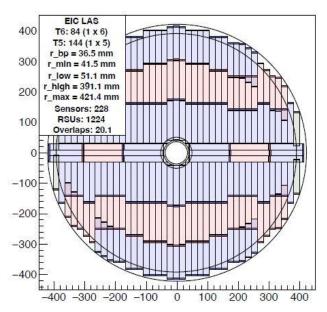


LAS w multiplexing – logical sketch of FPC

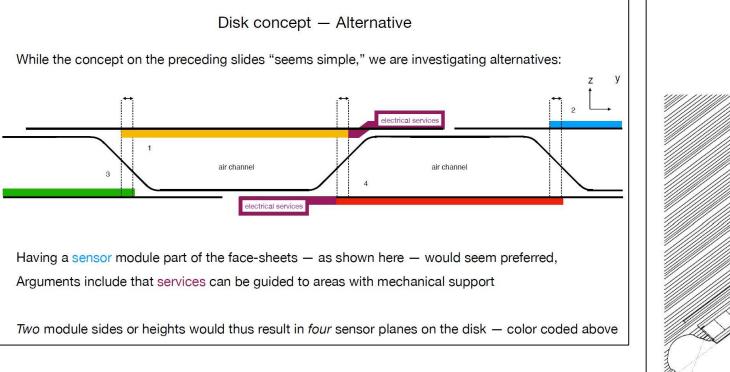

- FPC easier to design if LAS has data multiplexer:
 - x7 diff ctrl lines are on the high side...
 - .. but it should be OK to layout on a 2 layer FPC (19mm wide)
 - Design similar to existing ITS2 FPCs (15mm wide)
- FPC layout can be scaled to multiple segments per LAS.

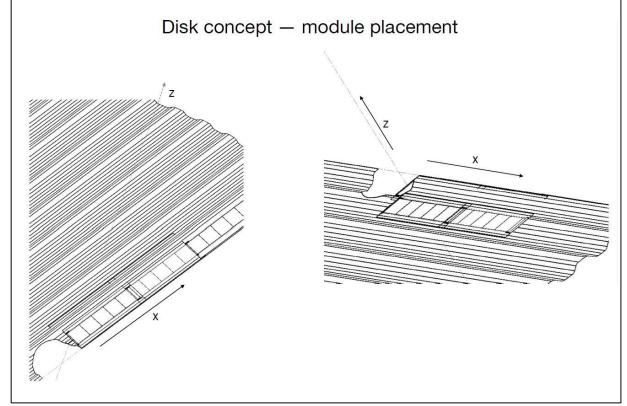
OB L4 – 6x T6 LAS (1 segment only)

- ToDo: to check if LAS w/o multiplexing could fit in a 2 layer FPC
 - L4: 36 differential data lines (it seems a lot)
 - It needs preliminary design


Disks - FPC

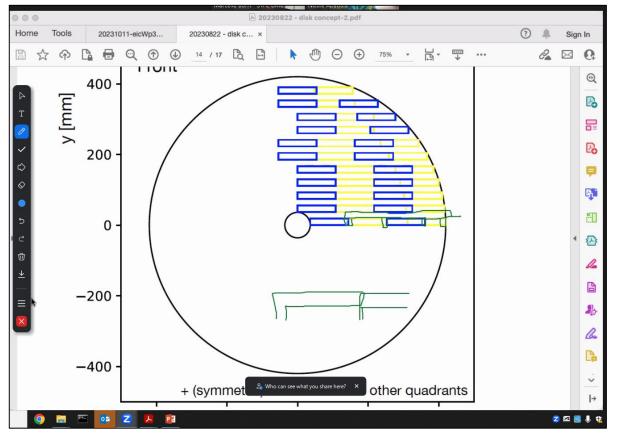
- L3 and disks have the same material budget;
- This material budget is referenced to ITS2 Inner barrel:
 - Al FPC is overlapping the sensor;
- Total of 10 disks of 8 different types;
- Different LAS variants will be installed in each disk;
- Currently LAS are installed on the front and back plane of the disks;
- Several layouts and LAS dimensions under consideration;
- Selected image for disks w combined LAS T5 and T6:
 - Representative of full disk coverage;

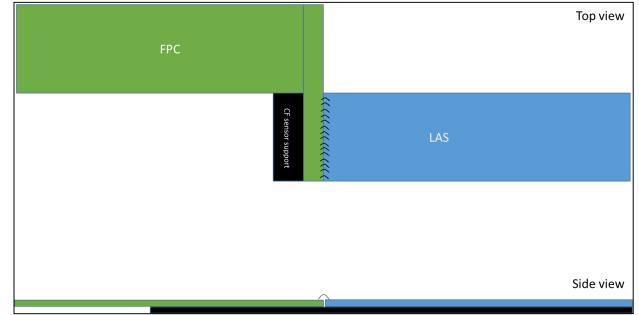



e-endcap				
Disk index	z (n	nm) in	ner r (mm)	outer r (mm)
	1	-250	36.76	240
	2	-450	36.76	415
	3	-650	36.76	421.4
	4	-900	40.0614	421.4
	5	-1150	46.3529	421.4
h-endcap				
Disk index				
	1	250	36.76	240
	2	450	36.76	415
	3	700	38.52	421.4
	4	1000	53.43	421.4
	5	1350	70.14	421.4

P.Jones – EIC SVT general meeting 20230822 ePIC-SVT ED4 z=-1050 cm

Disks - Baseline options for module loading (1/2)





Disks - Baseline options for module loading (2/2)

- L-shaped FPC;
- The short-side of the L-shaped FPC overlaps the long-side of L-shaped FPC of the module in the next/next/neighbouring row;
 - Potential localised excess of material budget
 - ... this could still be within the material budget because of air cooling (instead of water)

Material from 1:1 meeting N.Apadula M.Borri

Disks – air cooling considerations

Potentially lower material budget w air cooling

B Abelev et al and The ALICE Collaboration 2014 J. Phys. G: Nucl. Part. Phys. 41 087002

Table 4.1: Estimated contributions of the Inner Layer Stave to the material budget.

Stave element	Component	Material	Thickness (µm)	$\begin{array}{c} X_0 \ (\mathrm{cm}) \end{array}$	X_0 (%)	
HIC	FPC Metal layers	Aluminium	50	8.896	0.056	
	FPC Insulating layers	Polyimide	100	28.41	0.035	
	Pixel Chip	Silicon	50	9.369	0.053	
Cold Plate		Carbon fleece	40	106.80	0.004	
		Carbon paper	30	26.56	0.011	
	Cooling tube wall	Polyimide	25	28.41	0.003	
	Cooling fluid	Water		35.76	0.032	
	Carbon plate	Carbon fibre	70	26.08	0.027	
	Glue	Eccobond 45	100	44.37	0.023	
Space Frame		Carbon rowing		0.018		
Total					0.262	

ITS2 IB stave length ~270mm, width ~1.5cm, ALPIDE PWR <40m W/cm2

FPC – desing considerations SVT OB (and disk)

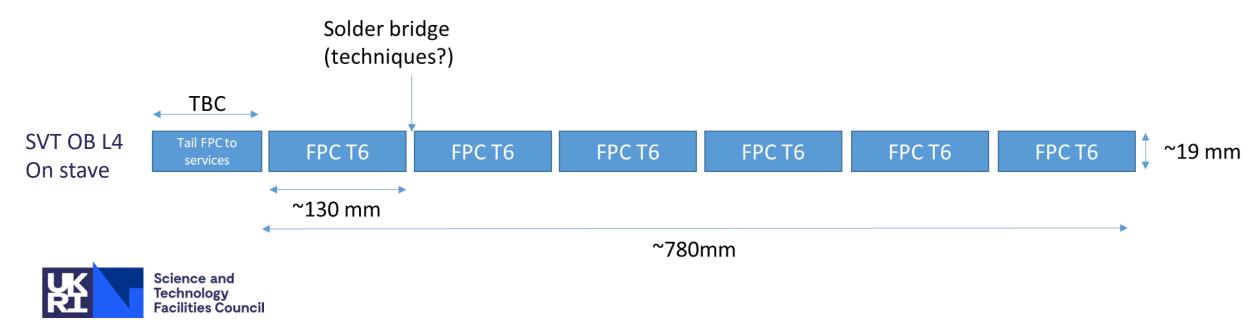
- Passives: caps, resistors etc.
- IC: sLDO; ctrl distribution ASIC;
- Features: module address hard wired via configurable resistors on FPC?
- Al tracks;
- Polyimide substrate;
- Two layers FPC;

Conclusion

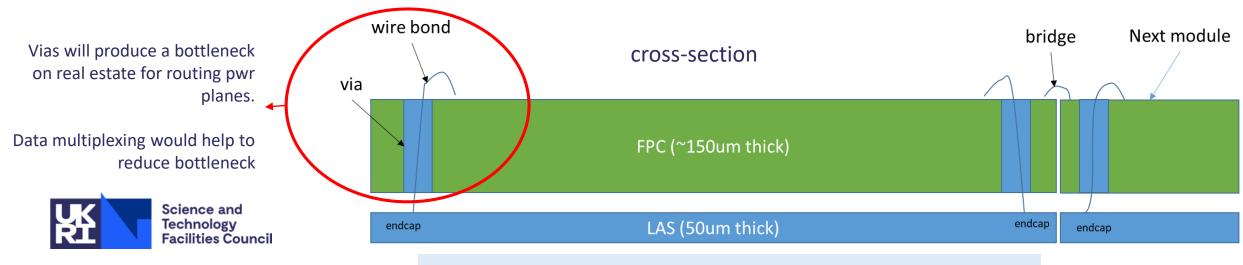
- sLDO:
 - No need for power bus, correct?
- Wire-bonding pads on LAS:
 - fixed position? Can be moved around periphery?
- Configuration of modules on stave:
 - Only loading from one side due to mechanical requirements for stiffness; Agreed?
- Air cooling:
 - feasible for stave? (and disk?)
- Low material budget achievable by interplay of different design parts
- To start preliminary design referenced to MOSS or MOSAIX
 - Need to add detail/inform discussion

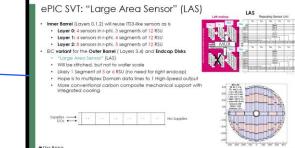
Thank you

Facebook: Science and Technology Facilities Council Twitter:@STFC_matters


YouTube: Science and Technology Facilities Council

		length (mm)		# pixels per reticle									
RSU size	19.564			894,240	,								
Pixel size	0.0200	0.0225											
Barrel					S	ens <mark>o</mark> r							
l aver Index	radius (mm)	7 (mm)		Area (mm^2)	RSUs in width	RSUs in length			# of sensors in z	# pixels	# sensor	s Notes	# Readout
Luyer maex	0 36			61,073			12	4	1	128,770,560	4	bent ITS3	7
	1 48			81,430			12	4	i	171,694,080	4	bent ITS3	9
	2 120			203,575		5	12	8	i	429,235,200	8	bent ITS3	24
	3 270			916,088		1	5	87		1,944,972,000	435	1x5 LAS	43
	4 420			2,216,706		i	5	135		4,828,896,000		1x5 LAS	108
e-endcap													
Disk index	z (mm)	inner r (mm)					-					2022002	
	1 -250					1	5			375,580,800	84	1x5 LAS	8
	2 -450	The second se				<u>.</u>	5			1,135,684,800		1x5 LAS	25
	3 -650					1	5			1,171,454,400	262	1x5 LAS	26
	4 -900		421.4			1	5			1,166,983,200	261	1x5 LAS	26
	5 -1150	46.3529	421.4	551,127		1	5			1,166,983,200	261	1x5 LAS	26
h-endcap													
Disk index													
	1 250	36.76	240	176,710)	1	5			375,580,800	84	1x5 LAS	8
	2 450	36.76	415	536,815	5	1	5			1,135,684,800	254	1x5 LAS	25
	3 700	38.52	421.4	553,216	5	1	5			1,171,454,400	262	1x5 LAS	26
	4 1000	53.43	421.4		,	1	5			1,158,040,800	259	1x5 LAS	25
	5 1350	70.14	421.4	542,422	2	1	5			1,144,627,200	256	1x5 LAS	25
				8,208,062	,					17,505,642,240	3768		416


FCP modularity Vs limits on manufacturing dimensions


- Modularity is always welcome
- 1 FPC per 1 LAS or 1 FPC per 2 LAS seems achievable;
- FPCs bridged at stave loading;
- Tail FPC could contain IC for data transmission, length to be defined
 - Cooling might be required, see FPC w integrated micro-channels.

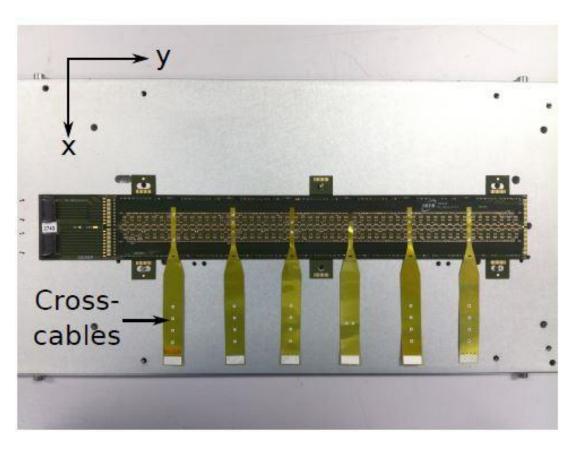
Doubt

- <u>"likely 1 segment 5 or 6 RSU (no need for right endcap)</u>"
- FPC will have 25um Al power planes:
 - It could provide pwr to both encaps form one end
 - "RI" drop calculated on FPC ? (ToDo)
 - FPC can provide power to both end caps:
 - Exploiting length of sensor
 - L3: 2 x T12 LAS = ~260 mm x 2 = ~520 mm; data lines: 6X2 =12 (reduction via multiplexing?)
 - L4: 3 x T12 LAS = ~260 mm x 3 = ~780mm; data lines: 6X3 =18 (reduction via multiplexing?)
 - In-chip multiplexing could data lines reduction:
 - data rate and pwr consumption.

To keep both end caps to achieve better pwr seems feasible?

FPC technology

- The technology of reference is an Aluminium tracks process.
 - Only few places can offer this technology
 - CERN -> ALICE ITS2 IB FPC
 - LTU -> ALICE ITS2 OB power bus
- To consider:
 - Select third supplier in UK
 - Develop capability with supplier -> apply for Innovation grants

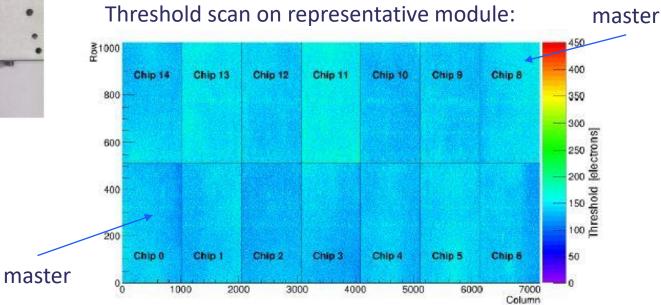

Daresbury & FPCs & ALPIDE

- ALICE ITS2 OB modules at the University of Liverpool [M.Buckland, M.Borri]
 [ALPIDE 100um thick]
 [Complete]
- Wire-bond less R&D on ALPIDE quad

 [A.Hill, M.Borri]
 [ALPIDE 100um thick]
 [Complete]
- R3B-Trt (FAIR) -> to produce 54 units (+ spares) ITS2 IB modules [M.Borri, M.Buckland, A.Hill]
 [ALPIDE 50um thick]
 [Started]

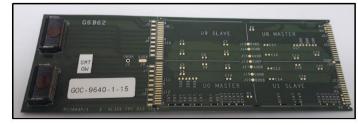
ALICE ITS2 OB

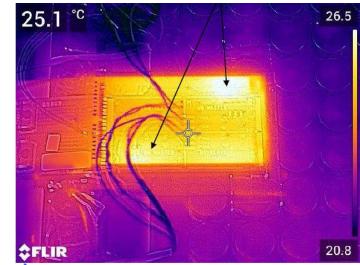
Series Production and Test of Hybrid Modules for the ALICE ITS Upgrade M.Buckland



Cu tracks [😕] 2 rows of 7 ALPIDE per FPC

-> similar to T6 LAS w 2 segments [[©]]


->layout could still be a good reference for SVT OB



ALPIDE QUAD w/o wire-bonds

Science and Technology Facilities Council

- ALICE was supposed to use laser soldering as interconnection technique...
- .. But it did not converge.
- We tried an alternative wire-bondless idea using STFC technology. [Thank you STFC Interconnect]
- Au studding of pads + Ag epoxy
- Potential advantages: cost effective
 - 1 site/supplier Au studs the chips
 - All other sites are enabled module production (inc interconnection) by using stencils and conductive glues.
- VERY LOW TRL

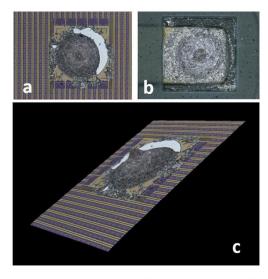
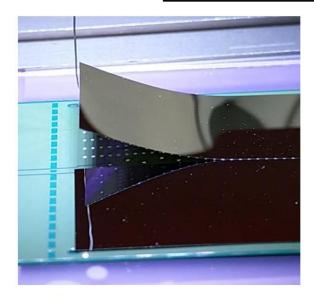
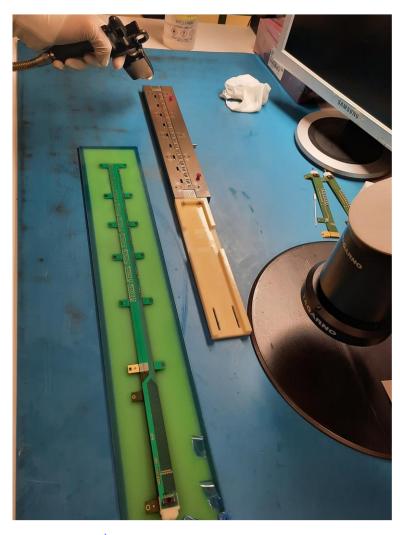
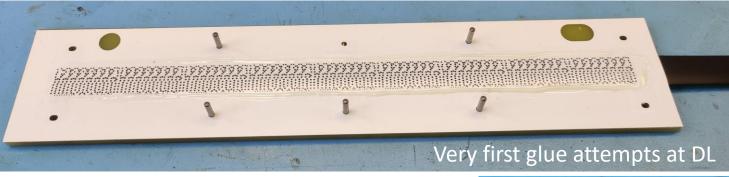
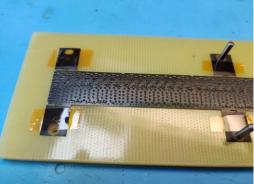


Fig. 7. Microscope images of contact pads after intentional separation of sensor and FPC: a) sensor contact pad, b) matching pad on FPC, and c) 3D rendering of sensor contact pad.

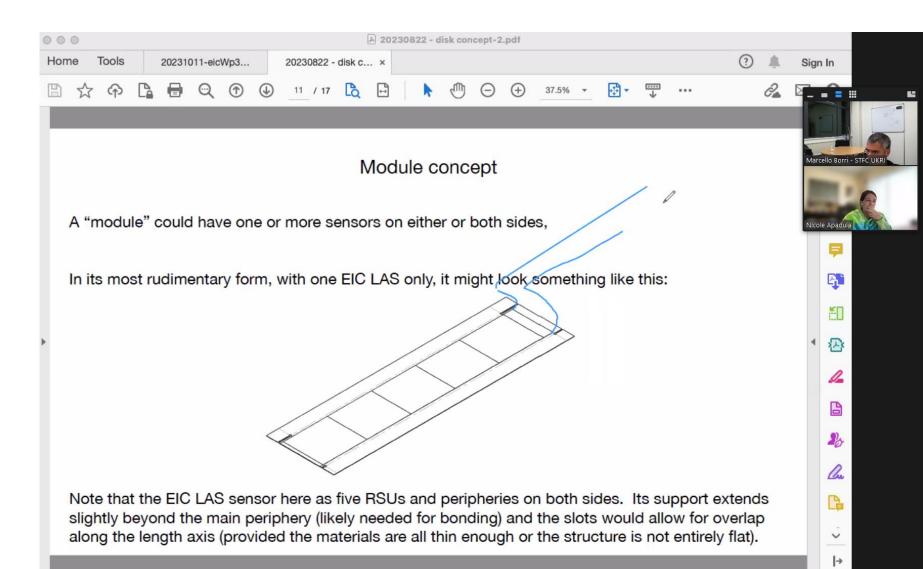
Thin Si Sensors on Flexible Printed Circuits – Study of Two Bond Methods A.Schneider

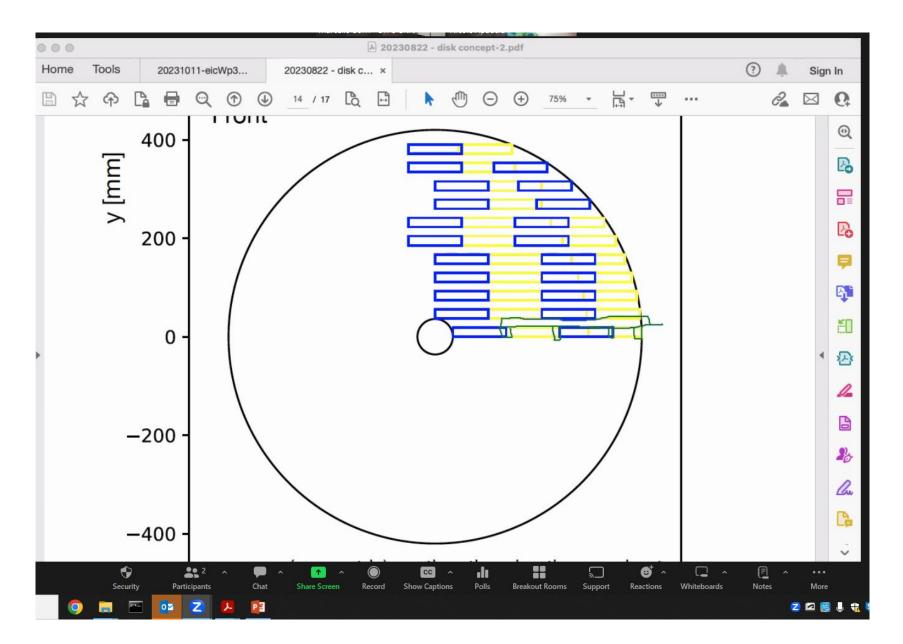




Fig. 6. Pull test on a chip attached to a FPC.

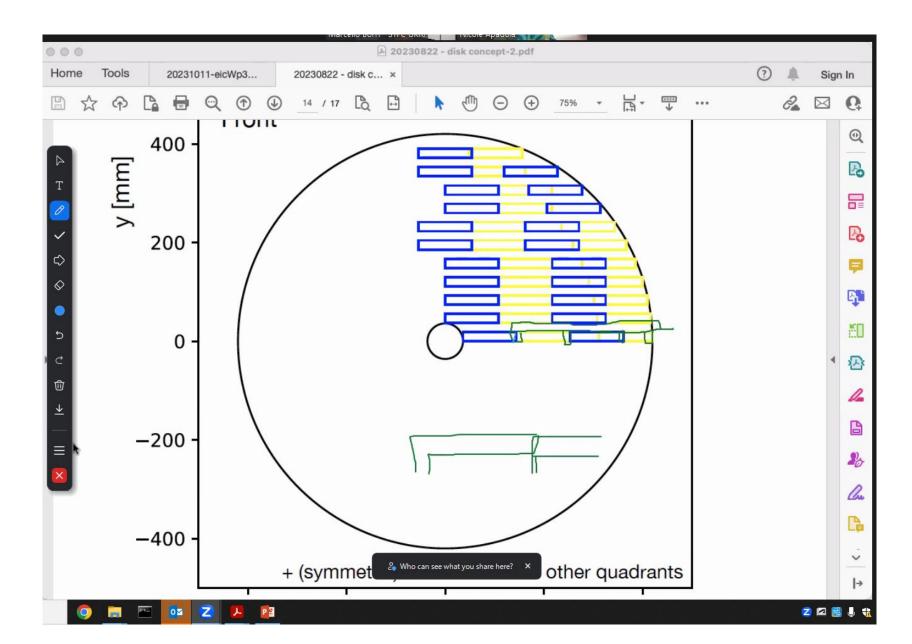

R3B Trt - ITS2 Inner barrel modules

- Handling of 50um ALPIDE
- Selection of glue masks suppliers
- Design optimisation of jigs
- Buying from CERN Aluminium FPCs
 - FPC is made by a combination of 3 suppliers on 3 different countries
 - Lead time and supply rate was not easy to handle.





1:1 meeting Nikki Marcello



1:1 meeting Nikki Marcello

1:1 meeting Nikki Marcello

1:1 meeting Georg Marcello

- GV Not sure if disks w air cooling will work
- Sensors to be mounted all on 1 side on stave, no staggering
- Cooling for stave currently undefined, most likely liquid cooling, but gas is also attractive due to uniformity
- Kapton is one of the dominant components of material budget, see below
- GV thinking of multipurpose parts:
 - Al foam for support and cooling, plus use it as power bus;
 - To bend Si LAS to increase structural approach
- Interplay between components to reach optimal design: sensor design, cooling, FPC;

