Jets-HF PWG requirements for backward hadronic calorimeter construction

Leszek Kosarzewski

Ohio State University

Jets-HF PWG group meeting, 15.11.2023

- Jet-HF measurements with backward HCal
- Backward HCal design
- Geometry implementation in dd4hep
- Primary (generated) particles backup
 - Energy vs. eta
 - Momentum vs. eta
- 5 LFHCal backup

Purpose:

- The point of this presentation is to get feedback from Jet-HF PWG about:
 - Which Jet measurements could benefit from backward HCal(nHCal)
 - Start coordinating with the Jet-HF PWG on the performance checks
 - Extended acceptance, charged/neutral hadron identification and measurement
 - What parameters are most relevant?
 - Efficiency, acceptance, granularity/position resolution
 - ullet How can we translate the acceptance into coverage in $x,\,Q^2$ plane

Physics processes of interest:

- Vector Meson production and measurement via dimuon channel
 - ullet μ/π distinction, track-cluster matching
- Jets coming from low-x partons
 - Low energy neutrons $\langle E \rangle = 2.38 \text{GeV}$
- Low-x physics in general, but more suggestions welcome!

Simulations of physics processes including backward HCal:

- Track-cluster association should work (not tested for nHCal)
- Basic reco clusters available further tests needed
- Truth clusters can also be used

Requirements: https://eic.jlab.org/Requirements/

A future backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken x

- Design considerations:
 - High efficiency for low energy neutron detection
 - Good spatial resolution to distinguish neutral/charged hadrons
- Follow similar solutions as Forward HCal instead of STAR EEMC megatiles
 - Due to required quick dissasembly of STAR the EEMC megatiles are no longer an option
 - Can make adjustments to Forward HCal (LFHCAL) design, but no need to reinvent the wheel

- Sampling calorimeter with 10 alternating layers, $2.4\lambda^0$ (red), similar to Belle-II KLM:
 - stainless steel 4 cm
 - plastic scintillator 4 mm follow forward HCal
- Light collection by SiPM:
 - Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html
- Electronics to follow solutions of other calorimetry systems (HGCROCv3 or EICROC)

ullet nHCal decoupled from the magnetic steel \Rightarrow more flexibility

Geometry implementation in dd4hep

- A simplified version with STAR EEMC tiles already present in the main ePIC branch and included in the simulation campaigns
 - · Good enough for basic checks
- Need a quick update with forward HCal-type geometry

Overlap of calorimeters

Acceptance

- \bullet Acceptance $-3.5 < \eta < -1.27$ can still be extended to match the stainless steel absorber volume
- Overlaps with backward and barrel EMcals
- Scattering may be important in these overlap regions

Scattering may be a problem for jet energy reconstruction

- 50% of neutrons scatter in backward EMCal
- Scattered neutron may fall out of a jet reconstruction cone
- We need to study this in coordination with Jet-HF PWG

Vector meson studies

- Important for high y or low- p_T vector mesons depends on type
- Increases acceptance
- \bullet Need projected MIP tracks and MIP signals in backward HCal and EMCal
 - μ/π distinction important, position resolution...

- $\sim 24X_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

- $\bullet \sim 2.4 \lambda_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

Conclusions

- Presented basic concept for backward HCal for ePIC
- Simplified geometry already in simulation campaign for STAR EEMC geometry+extensions
- ullet Need guidance from physics on the coverage in η
- Starting point for a discussion/coordination between PWG(effects on physics) and detector design

BACKUP

Jet particle distributions

• Pythia simulation by Brian Page

Jet particle distributions

• Pythia simulation by Brian Page

Primary particle distributions - eta and energy

- Primary (generated) MC particles hitting nHCal
- Mean energy of neutrons $< E > = 2.38 \,\mathrm{GeV}$
- \bullet Large number of high $E\ e^-$ from beam? (but these should have generator status=4)

Primary particle distributions - Energy vs. eta

- Primary (generated) MC particles hitting nHCal
- Mean energy of neutrons < E $>_{-2<\eta<-1}=$ $1.65~{\rm GeV}$ and < E $>_{-3<\eta<-2}=$ $2.52~{\rm GeV}$

- Primary (generated) MC particles hitting nHCal
- Mean energy of neutrons < E $>_{-4<\eta<-3}=$ 3.84 ${\rm GeV}$

- Primary (generated) MC particles hitting nHCal
- Mean momentum of neutrons $= 2.12 \,\mathrm{GeV/c}$

Primary particle distributions - Momentum vs. eta

- Primary (generated) MC particles hitting nHCal
- Mean momentum of neutrons < p $>_{-2<\eta<-1}=$ 1.32 $\rm{GeV/c}$ and < p $>_{-3<\eta<-2}=$ 2.29 $\rm{GeV/c}$

- Primary (generated) MC particles hitting nHCal
- \bullet Mean momentum of neutrons < $p>_{-4<\eta<-3}=3.68\,\mathrm{GeV/c}$

LFHCal design

Stacking design

