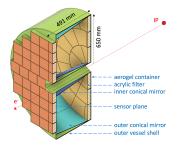
The vessel at Stony Brook pfRICH project

C-J. Naïm on behalf of the Stony Brook team

Center for Frontiers in Nuclear Science


pfRICH group meeting November 16, 2023

Introduction

► **Key feature**: Cylindrical vessel outer shell.

- ▶ Engineering aspects need attention for DOE reviews in 2024-2025.
- ▶ Outer shell construction crucial for light and gas-tight enclosure.

Vessel dimensions: measurements

► **Shape**: 1/2" thick cylinder (12.7 mm)

▶ Outer Diameter: 1300 mm

► Length: 491 mm

▶ **Precision**: < 1 mm radius and length

► **Technology**: Carbon-fiber composite material with nomex honeycomb core.

Vessel materials

- Outer shell designed with carbon fiber honeycomb sandwich technique.
- ▶ Mimics the successful sPHENIX TPC construction method.
- ► Construction steps identical to sPHENIX TPC outer field cage.

Building the Cylindrical Honeycomb Shell

Start:

- ► Craft a dodecahedron base from machinable foam.
- ► Ensure the foam is of appropriate size.

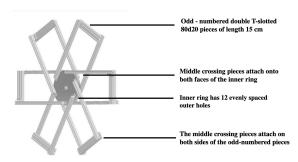
Precision Shaving:

- Utilize computer-controlled machinery for exact radius.
- Guarantee uniformity and precision.

Carbon Fiber Application:

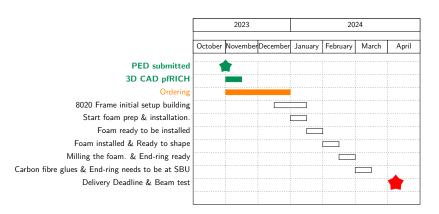
- Apply fine carbon fiber selectively incorporating a honeycomb structure.
- ► Add structural rigidity while maintaining a lightweight design.

Final Assembly:


- Ensure proper bonding and curing for carbon fiber and honeycomb layers.
- ▶ Inspect for imperfections or areas requiring reinforcement.

Steps and Milestones

- ► Milestones:
 - ► Mandrel Completion: February 1, 2024
 - ► Shell Completion: April 1, 2024
- ▶ Deliverables:
 - Completed outer shell by April 1, 2024.


Computer-Aided Design (CAD)¹

- ▶ Developing a scalable CAD program with a 65 cm radius.
- ► The chosen radius is closer to the vessel's maximum diameter of 130 cm than the initial 81 cm.
- This adjustment aims to establish a preliminary correlation among different ring components.
- ► The choice considers the uncertainty surrounding the final diameter of the vessel.

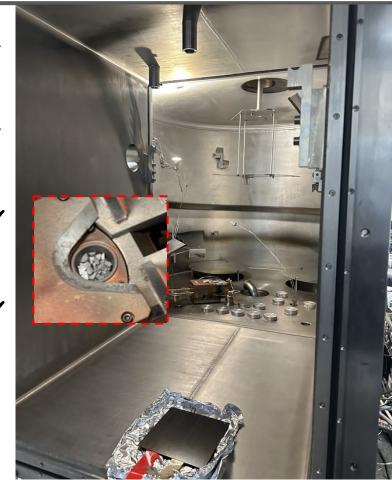
From E. Gebb and S. Madishetty

Project Timeline

Mirror Coating Updates

Nov 16, 2023

Where are we? How ready are we?


- Water cooling system Stability
 - 24 hour continuous operation
- Vacuum quality
 - 3x10⁻⁶ Torr (current configuration limit)
- Tape stability
 - Stickiness and outgassing test
- Rotation Motor
 - Continuous 1 hour operating ~ 1 rev/s

Documentation

Coating Documentation:

https://docs.google.com/spreadsheets/d/1qd2DJs3Ms1QuVJTnB4B2kjaaJST8t2qY7ZGq4mlv Hr0/edit?usp=sharinq

Coating Plan:

https://elog.cfnssbu.physics.sunysb.edu/SoLID/17

elog to keep track of the progress:

https://elog.cfnssbu.physics.sunysb.edu/SoLID/

First coating preparation:

https://elog.cfnssbu.physics.sunysb.edu/SoLID/

Next Step

- First coating projected at Friday morning Nov 16th.
- Reflectivity measurement at BNL will follow.
- Tighten up the protocol on "clean" coating condition.
 - We are coating in a dirty environment
 - Requested PED fund to help with this.
- Practice and optimize the coating parameter

Sincere Gratitudes for SPhenix Colleagues

 To Ross Corliss and Vassu Doomra for their patience and guidance in preparing and setting up the evaporator.