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Simulations
• All Simulations with Sartre for e+Au  
‣ 18+110 GeV 
‣ bnonSat model 

• Beam divergence  
‣ separately in x, y 
‣ separately for e and Au beam  
‣ taken from (pre)CDR 

• Beam momentum spread 
‣ separately for e and Au beam  
‣ taken from (pre)CDR
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e+p 
In e+p we can follow the definition of t: 

 

pA is known (beam) and pA’ is measured 
by forwards proton spectrometers 
(Roman Pots etc)

t = (pA − pA′ 
)2
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How well that ultimately works in terms of  one has to see. 
In any case alternative methods should be considered either to improve 
the precision or for systematic cross-checks.

σt /t



e+A 
In e+A we cannot measure pA’: 
• coherent: t kick not big enough to get 

heavy ions out of the beam pipe 
• incoherent: unlikely we can measure all 

fragments and reconstruct the whole ion 
and its momentum.
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In general t cannot be measured w/o knowing pA’ except in 
exclusive vector meson production: 

 
since 4-momenta from  and  are known
e + A → e′ + A′ + V

e, A, e′ V

t = (pA − pA′ 
)2



Method E
One can directly calculate t as: 

 
we call this method E (exact) 

• In absence of any distortions (e.g. MC) this method delivers the true t

t = (pA−pA′ 
)2 = (pV + pe′ 

− pe)2
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Method E

• Beam divergence affects little:      ~ 6% to 0.5% 

• Beam momentum spread is devastating:       ~ 15000% to 103%
σt /t

σt /t
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Method E
 

Why does it fail: 
Have to subtract large incoming and 
large outgoing momenta to get the 
"longitudinal part" of t. So a small 
error/smearing/inaccuracy in these 
has enormous effect on t 

t = (pV+pe′ 
− pe)2
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Method A
Approximate method: 
Rely only on the transverse momenta of the vector meson and the scattered 
electron ignoring all longitudinal momenta. Therefore beam momentum 
fluctuations do not enter the calculations. This method was extensively used at 
HERA in diffractive vector meson studies.  

  

• This formula is valid only for small t and small Q2. It also performs better for 
lighter vector mesons such as  and . In what follows we refer to this 
method as method A.

t = [ ⃗p T(e′ ) + ⃗p T(V)]2

ϕ ρ
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Method A
Downside: 

• Even absence of any distortions 
(e.g. MC) this method us 
underestimating the true t, 
although the difference is minimal 
‣Offset is largest at Q2 =1-2 GeV2 

with around 2% and decreases 
towards larger Q2 to 1% at Q2 = 
9-10 GeV2. The offset is absent for 
photoproduction (Q2 < 0.01 GeV2). 
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‣ For 1< Q2 < 10 GeV2 and including the offset we obtain resolutions (r.m.s.) of 
10%  t < 0.01  GeV2, 1.8 % at  t  = 0.10  GeV2, and 1.6% at t  = 0.16 GeV2. In 
photoproduction we observe no t smearing except at the lowest t (t < 0.01 GeV2) 
of 1.3%.
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A New Approach: Method L
Triggered by T. Lappi (Notes from March 18, 2020)
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Method is based on method E but overcomes several of its shortcomings. It is, 
however, strictly only applicable for coherent events. While in method E we are 
not using any information about the target nucleus at all, in method L we make 
use of the fact that the longitudinal momentum has to get transferred to the 
target due to 4-momentum conservation. 
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Method L
• Calculate   4-momentum: A′ pA′ 

= pA−(pV + pe′ 
− pe)
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• Any smearing of the 
longitudinal momentum 
difference will change 
the invariant mass of the 
target

• For coherent events this essentially indicates the failure of method E due to 
beam and detector smearing effects or that the event was mischaracterized 
as coherent  ⟹ Important analysis/cross-check tool

method E



Method L
• How the method works 
‣Calculate p of outgoing A’:  
‣ Express and correct the outgoing nucleus in light cone variables:  
๏  

๏  

๏   where   is now modified by using the true mass . 

‣ The corrected  4-momentum of the outgoing nuclei is now

 

‣ In short, you are using the true invariant mass of the nucleus to compensate the 
smearing in the larger component of the electron 4-momentum by modifying EA’ 
and pz,A’ simultaneously.  

‣Now simply: 

pA′ 
= pA − (pV + pe′ 

− pe)

p+
A′ 

= EA′ 
+ pz,A′ 

p2
T,A′ 

= p2
x,A′ 

+ p2
y,A′ 

p−
A′ 

= (M2
A+p2

T,A′ 
)/p+

A′ 
p−

A′ 
M2

A

pcorr
A′ 

= [px,A′ 
, py,A′ 

, (p+
A′ 

−p−
A′ 

)/2, (p+
A′ 

+p−
A′ 

)/2]

tcorr = pA − pcorr
A′ 

2
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Method L

All beam effects on
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Figure 5: Left: Kinematics for di↵ractive e + Au ! e0 + Au0 + � with � decaying into K+K�. The
left column is for photoproduction and the right for 1 < Q2 < 10 GeV2. Shown, from top to bottom are
pT versus pseudorapidity (⌘) for �, kaons from the � decay, and the scattered electron. Right: Same for
e + Au ! e0 + Au0 + ⇢ with ⇢ decaying into ⇡+⇡�.

vector meson Q2 < 0.01 GeV2 1 < Q2 < 10 GeV2

decay particle e0 decay particle e0

J/ |⌘| < 1 ⌘ < �5.5 |⌘| < 1 �3.5 < ⌘ < �2.5
� �3.5 < ⌘ < �2 ⌘ < �5.5 |⌘| < 1 �3.5 < ⌘ < �2.5
⇢ �3.5 < ⌘ < �2 ⌘ < �5.5 |⌘| < 1 �3.5 < ⌘ < �2.5

Table 2: Rapidity ranges used for scattered electrons and vector meson decay particles in this study.

2.1.7 Impact of beam e↵ects on �t/t

To study the e↵ects of beam momentum spread and divergence we smear the generated events as described
in Sec. 2.1.3 and extract t using method E and L in the range 0 < t < 0.18 GeV2. We divide the range
into 6 bins and calculate in each the r.m.s of the relative t smearing, defined as the di↵erence between
smeared (tsmeared) and true t divided by true t. Here we focus solely on J/ production 1 < Q2 < 10
GeV2.

t-range (GeV2)
method e↵ect 0-0.1 0.1-0.4 0.04 - 0.07 0.07 - 0.10 0.10 - 0.13 0.13 - 0.18

E beam divergence 0.061 0.015 0.008 0.007 0.006 0.005
E beam mom. spread 149.61 10.36 3.03 1.86 1.37 1.03
L divergence & mom. spread 0.048 0.016 0.009 0.007 0.006 0.005

Table 3: E↵ect of beam momentum spread and beam divergence on t-resolution, �t/t, with method E and
L for J/ production in 1 < Q2 < 10 GeV2. Shown is the relative di↵erence between smeared and actual
t for 6 ranges in t. The quoted �t/t is the r.m.s of the respective distribution calculated in the full range.

Our results are summarized in Tab. 3. We find that the resolution in both methods is little a↵ected
by beam divergence while the situation is more dramatic for the impact of beam momentum spread for
method E. Even in the highest t bin, �t/t exceeds 100% making method E essentially unusable. Method
L on the other hand is extremely robust against any beam e↵ects. This is further illustrated in Fig. 6
where we show the resulting cross-section d�/dt for both methods. The left figure depicts the impact of
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Method L
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Method L
• Method L  with beam effects and nominal pT resolution
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2.1.8 Impact of momentum resolution on �t/t

In order to study the impact of momentum resolution e↵ects on the t-resolution, we look at processes
with 1 < Q2 < 10 GeV2 since the resolution of the scattered electron plays a more important role than
is the case in photoproduction. As discussed in Sec. 2.1.6 we focus on two regions, the barrel region
(|⌘| < 1|), where the vector mesons are detected and the backward region (�3.5 < ⌘ < �2.5) for the
scattered electron. As starting values we use the resolution quoted in the Detector and R&D Handbook
[8] of �pT /pT (%) = 0.05 pT � 1 in the barrel and �pT /pT (%) = 0.1 pT � 2 in the backward region and
then vary the pT -dependent measurement precision term as well as the multiple scattering (MS) term to
explore the impact of each on the t resolution. As before, we calculate the r.m.s of the relative t resolution
in 6 t bins between 0 and 0.18 GeV2.

measurement MS t-range (GeV2)
precision term for term for barrel
barrel (backward) (%) (backward) (%) 0-0.1 0.1-0.4 0.04 - 0.07 0.07 - 0.10 0.10 - 0.13 0.13 - 0.18

0.05 (0.1) 1.0 (2.0) 4.58 0.45 0.25 0.19 0.16 0.14
0.1 (0.2) 1.0 (2.0) 4.71 0.46 0.25 0.20 0.17 0.14
0.025 (0.05) 1.0 (2.0) 4.54 0.45 0.24 0.19 0.16 0.14
0.05 (0.1) 0.5 (2.0) 3.53 0.38 0.21 0.17 0.14 0.12
0.05 (0.1) 0.5 (1.0) 1.29 0.22 0.12 0.10 0.08 0.07
0.05 (0.1) 0.5 (0.5) 0.78 0.16 0.09 0.07 0.06 0.05
0.05 (0.1) 0.25 (0.5) 0.49 0.12 0.07 0.05 0.05 0.04
0.05 (0.1) 0.25 (0.25) 0.36 0.09 0.05 0.04 0.04 0.03

Table 4: �t/t for J/ production in 1 < Q2 < 10 GeV2 in 6 di↵erent t bins. Each row shows the t
resolution for the two di↵erent terms that make up the pT resolution of the J/ decay particles. The
measurement precision term and the MS term are shown for the two di↵erent regions studies, the barrel
region for the J/ detection and the backward region for the measurement if the scattered electron. See
text for details.

measurement MS t-range (GeV2)
precision term for term for barrel
barrel (backward) (%) (backward) (%) 0-0.1 0.1-0.4 0.04 - 0.07 0.07 - 0.10 0.10 - 0.18

0.05 (0.1) 1.0 (2.0) 5.91 0.31 0.18 0.14 0.12 0.11
0.1 (0.2) 1.0 (2.0) 6.00 0.32 0.18 0.14 0.13 0.11
0.025 (0.05) 1.0 (2.0) 5.88 0.31 0.18 0.14 0.12 0.11
0.05 (0.1) 0.5 (2.0) 5.41 0.30 0.17 0.14 0.12 0.10
0.05 (0.1) 0.5 (1.0) 1.59 0.15 0.09 0.07 0.06 0.05
0.05 (0.1) 0.5 (0.5) 0.63 0.09 0.05 0.04 0.04 0.03
0.05 (0.1) 0.25 (0.5) 0.51 0.08 0.05 0.04 0.03 0.03
0.05 (0.1) 0.25 (0.25) 0.26 0.05 0.03 0.02 0.02 0.02

Table 5: �t/t for � production in 1 < Q2 < 10 GeV2 in 6 di↵erent t bins. Each row shows the t resolution
for the two di↵erent terms that make up the pT resolution of the � decay kaons. The measurement
precision term and the MS term are shown for the two di↵erent regions studies, the barrel region for the
� detection and the backward region for the measurement if the scattered electron. See text for details.

Tables 4 , 5, and 6 show the results for �t/t for J/ , �, and ⇢ mesons, respectively. The first line in
each table is the Handbook value. We first note that the first bin (0-0.1 GeV2) has in all cases a extremely
bad resolution as expected. As we will later see, this has ultimately little impact since d�/dt has no
pronounced features at low t. In general �t/t is a strong function of t, decreasing with increasing t. The
most important finding is that the measurement precision term in �pT /pT has little impact on the overall t
resolution in the barrel as can be seen in column 1-3. This holds for all studies vector mesons. We conclude
that a precision term of 0.05% for the barrel and 0.1% for the backward region seems adequate. The case
is di↵erent for the MS term, especially in the backward region, which appears to have a substantial impact
on �t/t as seen in column 4-8. Figure 7 illustrates this e↵ect. Shown is the coherent cross-section d�/dt
for 3 di↵erent �pT /pT settings. The red points depict the Handbook settings, which clearly wash out the

12

Method L and A  give 
similar t resolutions



Summary
•Method E fails in the presence of beam momentum resolution 
•Method L is an extension and a huge improvement 
‣Only applicable for coherent events  
‣We confirmed in simulations that all results obtained by method L 

for coherent processes are identical or very similar to that of 
method A in the studies discussed below.   

•Ultimately, in the actual analysis once the EIC is realized, both 
methods (A and L) should be carefully compared and studied.   
‣For coherent processes method L is likely the better choice as it 

does not rely on any approximations  
‣For incoherent processes method A is the only option available
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