

Flexible Printed Circuits (FPCs) for ePIC-SVT: An initial configuration

WP3: Electrical interfaces

Objective & outline

Objective:

To capture an initial configuration of the Flexible Printed Circuits (FPCs), based on the existing concepts of staves and disks.

The initial configuration will follow the iterations related to the evolutionary development of the SVT.

Outline:

- Material budget
- Stave and disk configurations
- Bill of materials
- Layout
- Conclusions

Material budget

IB	r [mm]	I [mm]	X/X0 %
L0	36	270	0.05
L1	48	270	0.05
L2	120	270	0.05

AS T5	BARREL	r [mm]	l [mm]	X/X0 %
	Layer 3	270	540	0.25
	Layer 4	420	840	0.55

DISKS	+z [mm]	-z [mm]	r_out [mm]	X/X0 %
Disk 0	250	-250	240	0.25
Disk 1	450	-450	420	0.25
Disk 2	700	-650	420	0.25
Disk 3	1000	-850	420	0.25
Disk 4	1350	-1050	420	0.25

J. Glover Current and future tracking and vertexing detectors

7 Nov 2023

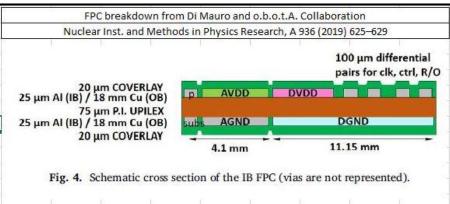
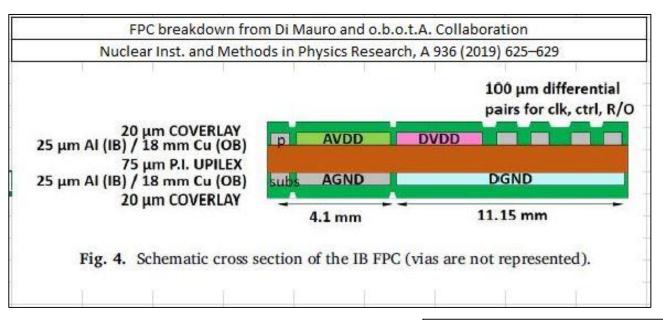
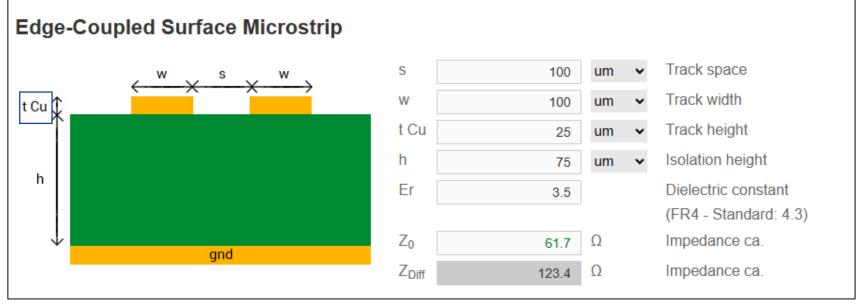


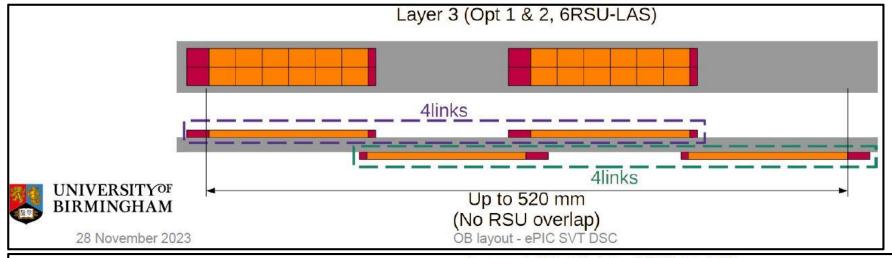
Table 4.1: Estimated contributions of the Inner Layer Stave to the material budget.

Stave element	Component	Material	Thickness (μm)	X_0 (cm)	X_0 $(\%)$
HIC	FPC Metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Pixel Chip	Silicon	50	9.369	0.053
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	25	28.41	0.003
	Cooling fluid	Water		35.76	0.032
	Carbon plate	Carbon fibre	70	26.08	0.027
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.018
Total					0.262

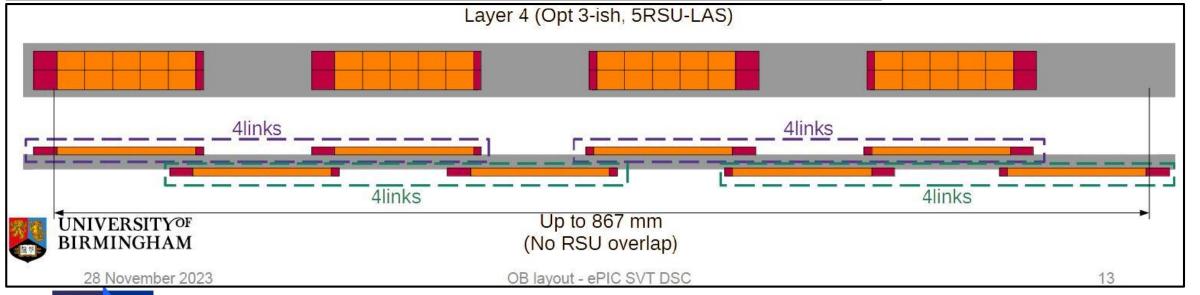

ITS2 IB stave length ~270mm, width ~1.5cm, ALPIDE PWR <40m W/cm2

Two layers FPC, w Al tracks, w impedance matched tracks

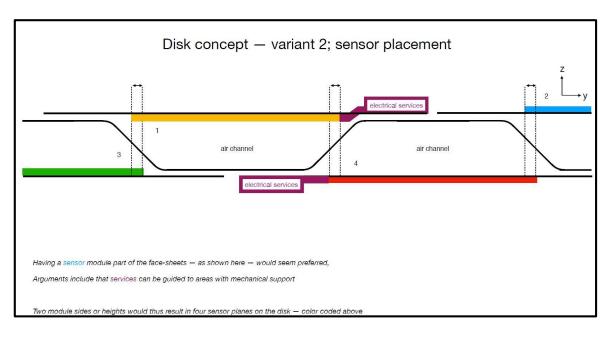

Material budget & impedance matching


Sanity check on impedance

OK ~100 ohm impedance for 100um diff pairs

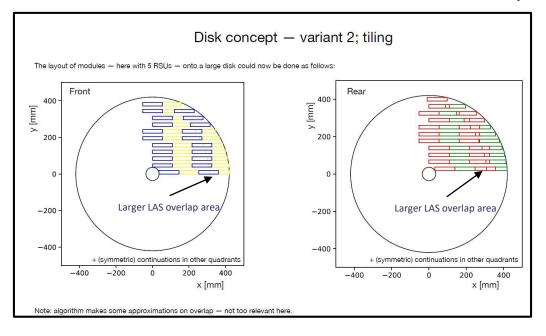


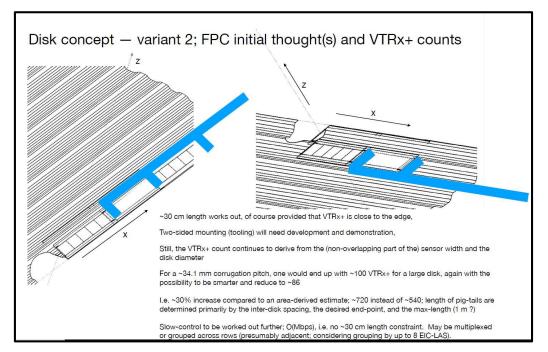
Stave configuration


Assumptions:

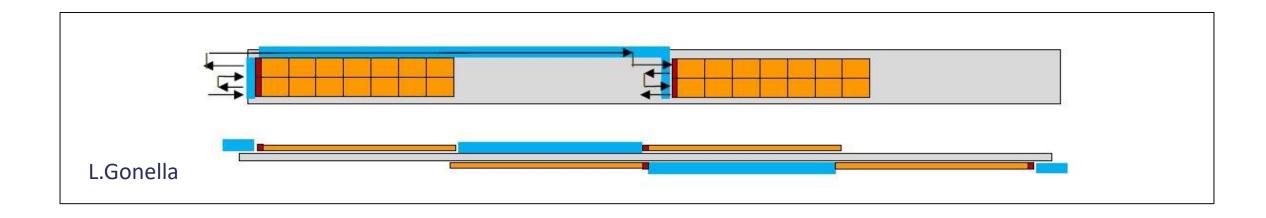
- Sensor mounted on top and bottom of cold plate;
- LEC overlaps REC;
- Services from left and right sides of staves

Disk configuration


Note:


Only T5 LAS considered for tiling disks;

LEC overlaps REC like in barrels to increase hermeticity;



Credit E.Sichtermann, N.Apadula

Case study: OB L4 half stave

OB L4 half stave:

A sequence of 4 T5 LAS, the longest chain of sensors in SVT

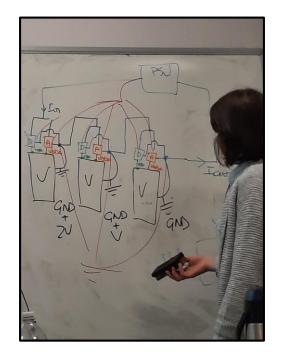
This layout is similar and inspired to that of disks.

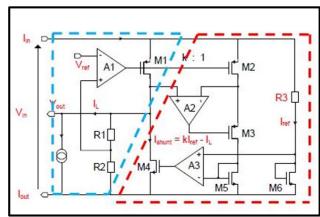
BOM (so far)

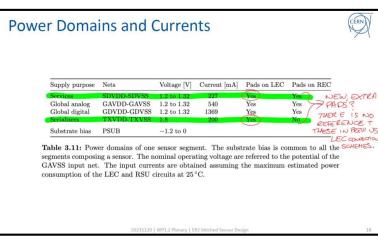
sLDO: notes

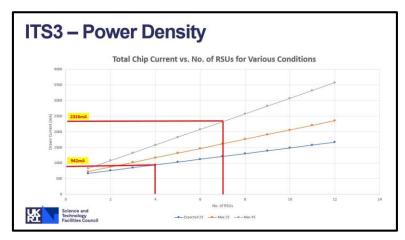
"My datasheet

Pin-out description

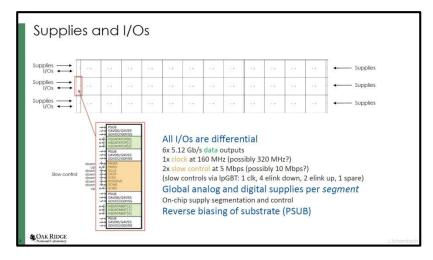

	Signal		
	I_in	input	2.5 A (or 1.7 A) (Id+ Ia) worst case scenario
	I_out	input	2.5 A (or 1.7 A) (Id+ Ia) worst case scenario
SLDO	Vout	output	4 options: SDVDD/SDVSS = 1.2 to 1.32 V (services) (227mA) GAVDD/GAVSS = 1.2 to 1.32 V (global analogue) (540mA) GDVDD/GDVSS = 1.2 to 1.32 V (global digital) (1369mA) TXVDD/TXVSS = 1.8 V (serialisers) (200mA)
			Note: PSUB -1.2 to 0 V not included

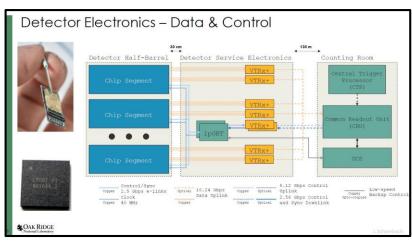

Physical layout


I_in		I_out
		Vout
foot print	2mmx2mm	



Assuming 4 sLDOs need per LAS



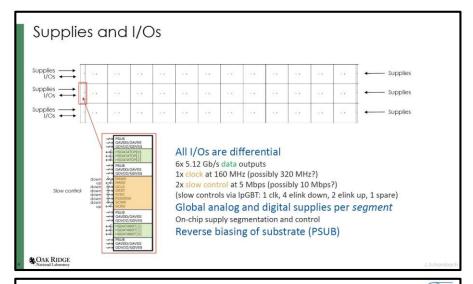


Mux/Demux IC: notes

Assuming 1 Mux/Demux IC need per LAS

Assuming that it is Pwr'd via one of the existing sLDOs

"My datasheet"


Pin-out description

	S1down+	Input	down	1 CONTROL link (down) carries MUX'd: (PMWR, SCWR, RST, SYNC)
	S1down-	Input	down	(FIVIVIR, SCWIR, RST, STIVE)
	31dOWII-	IIIput	uowii	1 link for GCLK
	S2down+	Input	down	Assuming that global clock gets buffered
	S2down-	Input	down	Assuming that global clock gets burrered
	3200W11-	IIIput	uowii	1 Ctrl link (up) carries MUX'd
	C1	Outnut		PMRD(up) and SCRD(up)
	S1up+ S1up-	Output Output	up up	PIVIKD(up) and SCRD(up)
	S GLCK+	Output	down	160MHz (or 320MHz)
	_		down	100IVINZ (OT 320IVINZ)
	S_GLCK- S_PMWR+	Output	down	EMbas (10Mbas)
	_	Output		5Mbps (10Mbps)
	S_PMWR-	Output	down	58 db (408 db)
slowCtrlChip	S_PMRD+	Input	up	5Mbps (10Mbps)
siowctriciip	_	Input	up	F8 dl (4 O8 dl)
	S_SCWR+	Output	down	5Mbps (10Mbps)
	S_SCWR-	Output	down	
	S_SCRD+	Input	up	5Mbps (10Mbps)
	S_SCRD-	Input	up	
	S_GRST+	Output	down	
	S_GRST-	Output	down	
	G_SYNC+	Output	down	
	G_SYNC-	Output	down	
	G_RESERVE+	N/A	N/A	
	G_RESERVE-	N/A	N/A	
				supplied locally from sLDO
				multiple pads
	VDD	Input		Supply voltage and power?
	GND	Input		

Physical layout

	To/From IpGBP	T	To/From LAS
	S1down+		S_GLCK+
	S1down-		S_GLCK-
	S2down+		S_PMWR+
	S2down-		S_PMWR-
	S1up+		S_PMRD+
	S1up-	4	S_PMRD-
From local sLDO	VDD		S_SCWR+
FIOIIIIOCAI SEDO	GND		S_SCWR-
			S_SCRD+
			S_SCRD-
			S_GRST+
			S_GRST-
			S_SYNC+
			S_SYNC-
	foot print	4800 mm x 2000 mm	

LAS: notes

Assuming LAS is T5 only

Power Domains and Currents

Nets	Voltage [V]	Current [mA]	Pads on LEC	Pads	on REC
SDVDD-SDVSS	1.2 to 1.32	227	Yes	Yes	NEW, EXTRE
GAVDD-GAVSS	1.2 to 1.32	540	Yes	Yes	>7 PAPS?
GDVDD-GDVSS	1.2 to 1.32	1369	Yes	Yes	THERE IS NO
TXVDD-TXVSS	1.8	200	Yes	No	RETERENCE T
PSUB	-1.2 to 0		_		THESE IN PREVIOU
	SDVDD-SDVSS GAVDD-GAVSS GDVDD-GDVSS TXVDD-TXVSS	SDVDD-SDVSS	SDVDD-SDVSS 1,2 to 1,32 227 GAVDD-GAVSS 1,2 to 1,32 540 GDVDD-GDVSS 1,2 to 1,32 1369 TXVDD-TXVSS 1,8 200	SDVDD-SDVSS 1.2 to 1.32 227 Yes GAVDD-GAVSS 1.2 to 1.32 540 Yes GDVDD-GDVSS 1.2 to 1.32 1369 Yes TXVDD-TXVSS 1.8 200 Yes	SDVDD-SDVSS 1.2 to 1.32 227 Yes Yes GAVDD-GAVSS 1.2 to 1.32 540 Yes Yes GDVDD-GDVSS 1.2 to 1.32 1369 Yes Yes TXVDD-TXVSS 1.8 200 Yes No

Table 3.11: Power domains of one sensor segment. The substrate bias is common to all the SCHEMES. segments composing a sensor. The nominal operating voltage are referred to the potential of the GAVSS input net. The input currents are obtained assuming the maximum estimated power consumption of the LEC and RSU circuits at 25 °C.

20231120 | WP1.2 Plenary | ER2 Stitched Sensor Design

"My datasheet"

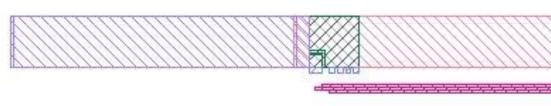
Pin-out description

	S_GLCK+	Input	down	160MHz (or 320MHz)	Clk
	S_GLCK-	Input	down		CIK
	S_PMWR+	Input	down	5Mbps (10Mbps)	
	S_PMWR-	Input	down		
	S_PMRD+	Output	up	5Mbps (10Mbps)	
	S_PMRD-	Output	up		
	S_SCWR+	Input	down	5Mbps (10Mbps)	
	S_SCWR-	Input	down		Slow ctrl
	S_SCRD+	Output	up	5Mbps (10Mbps)	310W CUI
	S_SCRD-	Output	up		
	S_GRST+	Input	down		
	S_GRST-	Input	down		
	G_SYNC+	Input	down		
LAS	G_SYNC-	Input	down		
	G_RESERVE+	N/A			
	G_RESERVE-	N/A			
	HSDATA+	Output	up	5.12 Gb/s	Data
	HSDATA-	Output	up		Data
	SDVDD	Input		1.2 to 1.32 V (services) (227mA)	
	SDVSS	Input			
	GAVDDS	Input		1.2 to 1.32 V (global analogue) (540mA)	
	GAVSS	Input			Pwr
	GDVDD	Input		1.2 to 1.32 V (global digital) (1369mA)	PWI
	GDVSS	Input			
	TXVDD	Input		1.8 V (serialisers) (200mA)	
	TXVSS	Input			
	PSUB	Input			Sensor bias

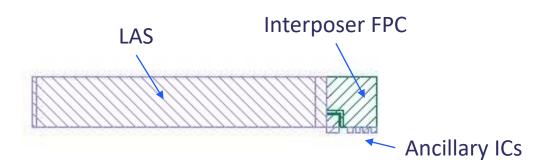
Physical layout

	l (mm)	w (mm)
RSU	21.666	19.564
LEC	4.5	19.564
REC	1.5	19.564
T5 LAS	114.33	19.564
T6 LAS	135.996	19.564

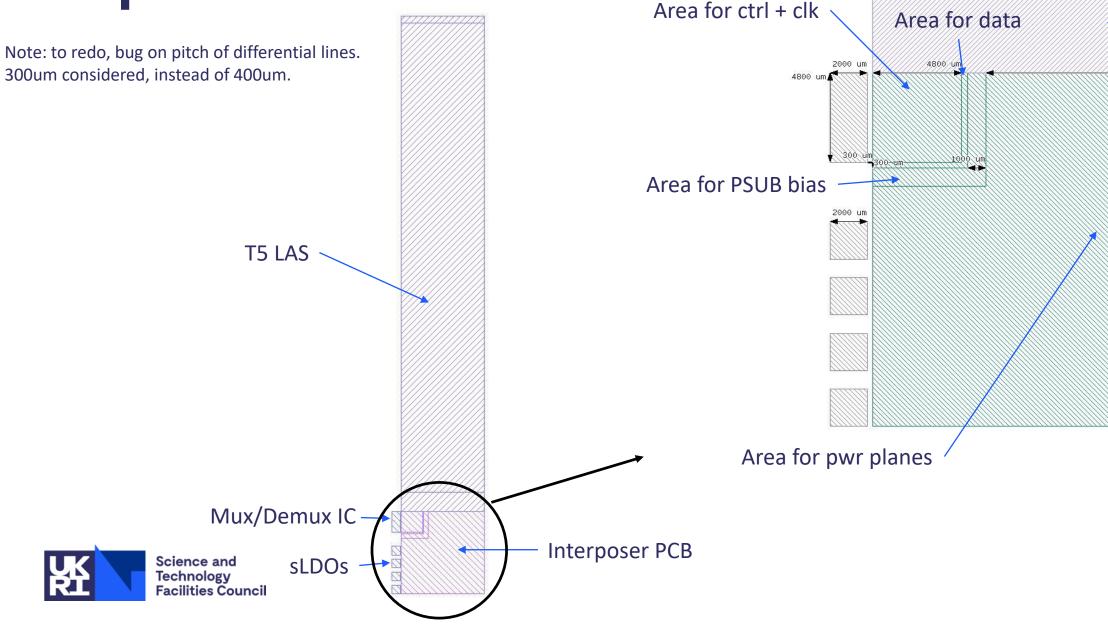
Layout



Layout into


Sensors: top only

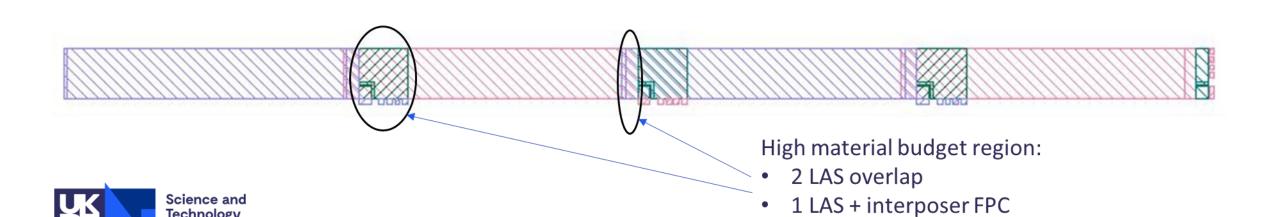
Sensors: top and bottom



High material budget region:

- 2 LAS overlap
- 1 LAS + interposer FPC

Interposer FPC

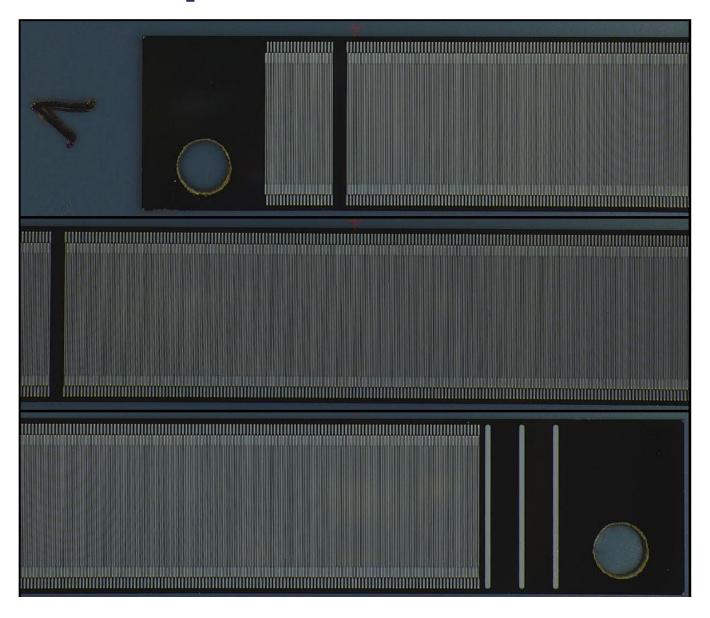

LEC

12900 um 4500 um

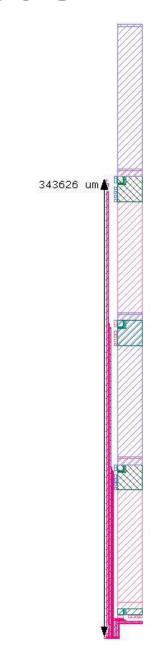
Interposer FPC: material budget

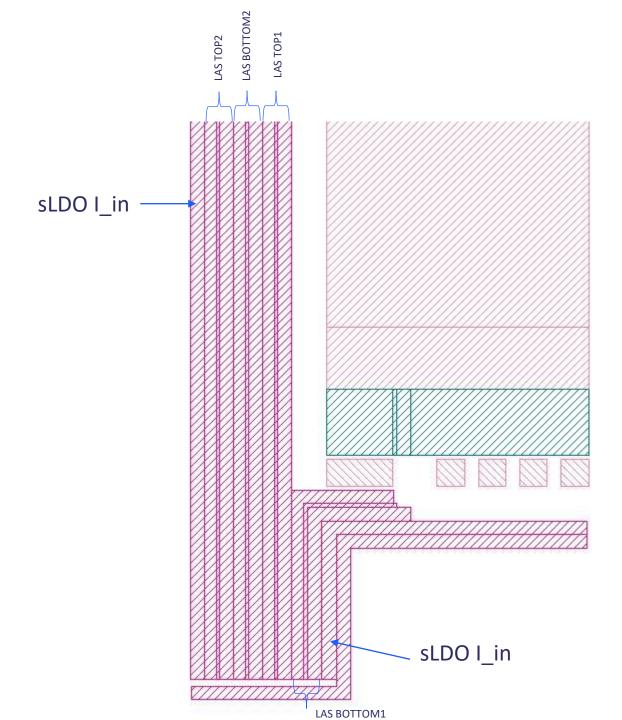
Technology Facilities Council

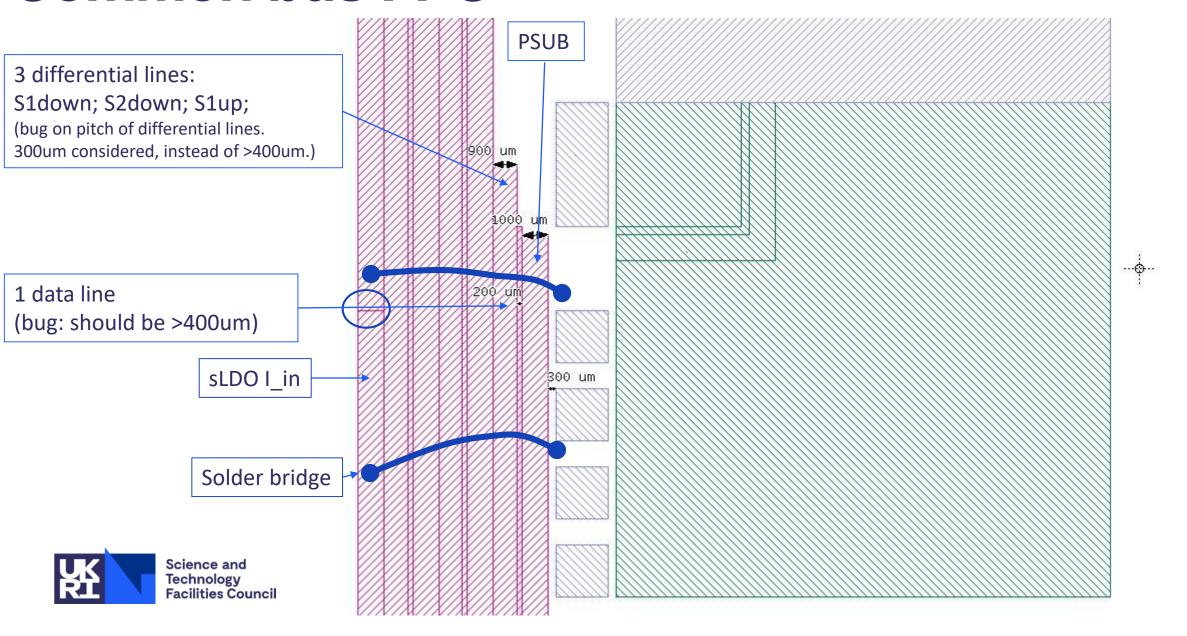
	Components	Thickness (um)	Material	X0 (cm)	X0 (%)	Comment
	FPC metal layers	50	Al	8.897	0.056	25um/layer x 2 layers = 50um
	FPC insulating layers 1	75	UPILEX-S75	28.57	0.026	UPILEX-S75 is a type of polyimide
HIC	FPC insulating layers 2	40	Coverlay	28.57	0.014	20um/layer x 2 layers = 40um, coverlay is polyimide
	Pixel Chip	50	Si	9.37	0.053	
	Glue	50	Araldite 2011	39.07	0.0128	ATLAS assumes phenol epoxy C6 H6 O
	Total (FPC -	Pixel chip + glue		0.163		
	Total w/o glu	ue (FPC + Pixel ch		0.150		
				consider Si interposer as option:		
	Tot	al FPC only	0.096	Si 50um thin equates to X0 (%) 0.053.		
						N.B. ~50% saving in material budget



Si interposer (1 layer): examples






Common bus FPC

Science and Technology Facilities Council

Common bus FPC

Conclusion

• An initial FPC layout has been captured.

 L4 half stave configuration was used a case study, representative for disks and staves.

- Improvements required e.g.
 - Definition of LAS layout on staves.

Thank you

Facebook: Science and Technology Facilities Council

Twitter: @STFC_matters

YouTube: Science and Technology Facilities Council