Update on IP8 DD4hep Simulation: Vetoing Efficiency and Beam Parameters

Jihee Kim (jkim11@bnl.gov)

2023/11/27

Approach – Incoherent Vetoing Efficiency

- Used simulated **BeAGLE** 801k events with $1 < Q^2 < 10$
 - **ePb 18**×**110 GeV incoherent** $J/\psi(\mu\mu)$ **events** $ePb \rightarrow e' + J/\psi(\mu\mu) + X$ (S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1.hepmc)
- Passed through afterburner IP8 eAu configuration
 - IP8 crossing angle (35 mrad) and IP6 eAu beam effects based on **EIC CDR table 3.5**
- Discarded events having more than one electron in final state with $\eta < -1$
- Calculated 10 σ safe distance cut based on *eAu β @ IP6 and @ IP8 RPSF*
- Tagged events for nuclear breakups <u>*tagging purpose</u>*
 - o B0 Tracker: at least two out of four layers have registered RAW hits
 - OMD: two layers (actual four layers as redundancy) have registered RAW hits
 - ZDC: any registered RAW hits in either ECAL and HCAL
 - RPSF: one layer (closet to 2nd focus) has registered RAW hits outside 10σ safe distance
 - B0 Ecal: energy of all hits greater than 100 MeV

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

With 10*σ* safe distance cut based on *ep β @ IP8 RPSF* 2,250 of 800,964 events were NOT tagged

J. KIM

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Coherent diffractive minima

With 10σ safe distance cut based on *ep β @ IP8 RPSF* + B0 Ecal tagged (any raw hits) 638 of 800,964 events were NOT tagged

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

With 10σ safe distance cut based on *ep β @ IP8 RPSF* + B0 Ecal tagged (> 100 MeV) 1286 of 800,964 events were NOT tagged

Approach – Missing Components for IP8

 10σ safe distance cut based on beam parameters Ο

- Safe distance where Roman Pot detectors can be placed close to beam Ο
- **Transverse beam size** (σ) is defined as Ο

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + D_{x,y}\frac{\Delta p}{p}}$$

where ϵ : Emittance, β : Beta function, D : Momentum dispersion, $\frac{\Delta p}{r}$: Momentum spread

18 GeV on 275 GeV	Momentum Dispersion (D)	Emittance X (ϵ_x) [mm]	Emittance Y(ϵ_y) [mm]	Beta function X (β_x^*) [mm]	Beta function Y (β_y^*) [mm]	Momentum spread $\Delta p/p$
IP6 ep High Divergence	-0.21	18.e-6	1.6e-6	800	71	6.8e-4
		Emittance	Emittance			
18 GeV on 110 GeV	Momentum Dispersion (D)	X (ϵ_x) [mm]	$Y(\epsilon_y)$ [mm]	Beta function X (β_x^*) [mm]	Beta function Y (β_y^*) [mm]	Momentum spread ∆ p/p

Momentum Dispersion (D) are from Randy's. Beta functions (β_x^* and β_y^*) in table are values at IP6 interaction point (z = 0)

Beam Parameters for IP8 Study

National Laboratory

 Use IP6 beam conditions except for momentum dispersion (D) and Beta function @ secondary focus from Randy's

18 GeV on 275 GeV	Momentum Dispersion (D)	Emittance X (ϵ_x) [mm]	Emittance Y(ϵ_y) [mm]	Beta function X (β_x) [mm]	Beta function Y (β_y) [mm]	Momentum spread ${\it \Delta p/p}$	
IP8 ep	0.382	18.e-6	1.6e-6	$\beta_x^{*(z=0)} = 800$	$\boldsymbol{\beta}_{y}^{*(z=0)} = 71$	6.8e-4	
Divergence	0.382	18.e-6	1.6e-6	$m{eta}_x$ Secondary focus 2289.454596	condary focus $\boldsymbol{\beta}_y$ Secondary focus9.4545964538.713168	6.8e-4	
		Emittoneo	Emittonoo				
18 GeV on 110 GeV	Momentum Dispersion (D)	Emittance X (ϵ_x) [mm]	[mm]	Beta function X (β_x^*) [mm]	Beta function Y (β_y^*) [mm]	Momentum spread ${\it \Delta p/p}$	
18 GeV on 110 GeV	Momentum Dispersion (D) 0.382	$\begin{array}{c} \text{Emittance} \\ \text{X} (\epsilon_x) \\ \text{[mm]} \end{array}$ $43.2\text{e-}6$	$FinittanceY(\epsilon_y)[mm]5.8e-6$	Beta function X (β_x^*) [mm] $\beta_x^{*(z=0)} = 910$	Beta function Y (β_y^*) [mm] $\beta_y^{*(z=0)} = 40$	Momentum spread $\Delta p/p$ 6.2e-4	
18 GeV on 110 GeV IP8 eAu	Momentum Dispersion (D) 0.382 0.382	43.2e-6	$Finittance Y(\epsilon_y)$ [mm] 5.8e-6 5.8e-6	Beta function X (β_x^*) [mm] $\beta_x^{*(z=0)} = 910$ $\beta_x^{\text{Secondary focus}}$ 2289.454596	Beta function Y (β_y^*) [mm] $\beta_y^{*(z=0)} = 40$ $\beta_y^{\text{Secondary focus}}$ 4538.713168	Momentum spread $\Delta p/p$ 6.2e-4 6.2e-4	

Summary 10σ Safe Distance Cut

 For IP8, used IP6 beam conditions except for momentum dispersion (D) and Beta function @ secondary focus from Randy's

	σ_{1x}	σ_{1y}
ep β @ IP8 (= IP6)	0.121077	0.0193225
ep β @ IP8 RPSF	0.203642	0.0867277
eAu β @ IP8 (= IP6)	0.198869	0.0216527
eAuβ@IP8 RPSF	0.314867	0.1629770
Wan's IP8 Study	0.328283	0.085217

Missing Components for IP8

- Evaluate more realistic $\beta(z)_{x,y}$ especially for IP8 eAu Beam Optics (other nuclei?)
 - Need $\beta(z)_{x,y}$ at roman pot detector
 - o For incoherent vetoing efficiency study, eAu beam optics would be very helpful
 - Assume ep $\beta(z)_{x,y}$ at IP6 and IP8 can be similar?
 - May need use different $\beta(z)_{x,y}$

for possible 3 roman pot stations, see figures \rightarrow (ex. 1st – 2nd "secondary focus" – 3rd)

- Evaluate transfer matrices to describe particle motion through magnets towards detector
 - o In order to reconstruct very forward final-state protons

Brookhaver

Next Steps

- \circ $\,$ Need IP8 beam optics study $\,$
 - Evaluate more realistic $\beta(z)_{x,y}$ especially for at secondary focus to quantify vetoing power for 2nd detector
- (Work in progress) Implementing hadron downstream beam pipe at B0 spectrometer (+ ZDC)
 - Quantify impact on low pT cutoffs and acceptance

EIC CDR Table 3.3 (ep High Divergence)

Page 102

Table 3.3: EIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High divergence configuration.

Species	proton	electron	proton	electron	proton	electron	proton	electron	proton	electron
Energy [GeV]	275	18	275	10	100	10	100	5	41	5
CM energy [GeV]	140.7		104.9		63.2		44.7		28.6	
Bunch intensity [10 ¹⁰]	19.1	6.2	6.9	17.2	6.9	17.2	4.8	17.2	2.6	13.3
No. of bunches	29	90	1160		1160		1160		1160	
Beam current [A]	0.69	0.227	1	2.5	1	2.5	0.69	2.5	0.38	1.93
RMS norm. emit., h/v [μm]	5.2/0.47	845/71	3.3/0.3	391/26	3.2/0.29	391/26	2.7/0.25	196/18	1.9/0.45	196/34
RMS emittance, h/v [nm]	18/1.6	24/2.0	11.3/1.0	20/1.3	30/2.7	20/1.3	26/2.3	20/1.8	44/10	20/3.5
β^* , h/v [cm]]	80/7.1	59/5.7	80/7.2	45/5.6	63/5.7	96/12	61/5.5	78/7.1	90/7.1	196/21.0
IP RMS beam size, h/v [µm]	119/11		95/8.5		138/12		125/11		198/27	
K_x	11.1		11	11.1 11.1		11.1		7.3		
RMS $\Delta \theta$, h/v [µrad]	150/150	202/187	119/119	211/152	220/220	145/105	206/206	160/160	220/380	101/129
BB parameter, $h/v [10^{-3}]$	3/3	93/100	12/12	72/100	12/12	72/100	14/14	100/100	15/9	53/42
RMS long. emittance $[10^{-3}, eV \cdot s]$	36		36		21		21		11	
RMS bunch length [cm]	6	0.9	6	0.7	7	0.7	7	0.7	7.5	0.7
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8
Max. space charge	0.007	neglig.	0.004	neglig.	0.026	neglig.	0.021	neglig.	0.05	neglig.
Piwinski angle [rad]	6.3	2.1	7.9	2.4	6.3	1.8	7.0	2.0	4.2	1.1
Long. IBS time [h]	2.0		2.9		2.5		3.1		3.8	
Transv. IBS time [h]	2.0		2		2.0/4.0		2.0/4.0		3.4/2.1	
Hourglass factor H	0.	91	0.94		0.90		0.88		0.93	
Luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1.	54	10	.00	4.	48	3.	68	0	.44

EIC CDR Table 3.5 (eAu)

Page 104

Table 3.5: EIC beam parameters for e-Au operation for different center-of-mass energies \sqrt{s} , with strong hadron cooling.

Species	Au ion	electron						
Energy [GeV]	110	18	110	10	110	5	41	5
CM energy [GeV]	89.0		66.3		46.9		28.6	
Bunch intensity [10 ¹⁰]	0.08	6.2	0.05	17.2	0.05	17.2	0.036	17.2
No. of bunches	290		1160		1160		1160	
Beam current [A]	0.23	0.227	0.57	2.50	0.57	2.50	0.41	2.50
RMS norm. emit., h/v [µm]	5.1/0.7	705/20	5.0/0.4	391/20	5.0/0.4	196/20	3.0/0.3	196/20
RMS emittance, h/v [nm]	43.2/5.8	20.0/0.6	42.3/3.0	20.0/1.0	42.3/3.0	20.0/2.0	68.1/5.7	20.0/2.0
β^* , h/v [cm]]	91/4	196/41	91/4	193/12	91/4	193/6	90/4	307/11
IP RMS beam size, h/v [µm]	198/15		196/11		197/11		248/15	
K _x	0.077		0.057		0.056		0.061	
RMS $\Delta \theta$, h/v [µrad]	218/379	101/37	216/274	102/92	215/275	102/185	275/377	81/136
BB parameter, $h/v [10^{-3}]$	1/1	37/100	3/3	43/47	3/2	86/47	5/4	61/37
RMS long. emittance $[10^{-3}, eV \cdot s]$	16		16		16		16	
RMS bunch length [cm]	7	0.9	7	0.7	7	0.7	11.6	0.7
RMS $\Delta p / p [10^{-4}]$	6.2	10.9	6.2	5.8	6.2	6.8	10	6.8
Max. space charge	0.007	neglig.	0.008	neglig.	0.008	neglig.	0.038	neglig.
Piwinski angle [rad]	4.4	1.1	4.5	1.2	4.5	1.5	5.8	1.2
Long. IBS time [h]	0.33		0.36		0.36		0.85	
Transv. IBS time [h]	0.81		0.89		0.89		0.16	
Hourglass factor H	0.	85	0.	85	0.85		0.71	
Luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	0.	52	4.	76	4.	77	1.	67