Update on IP-8 Far-Forward Detector Simulation pT Acceptance with B0 and Vetoing Efficiency

Jihee Kim (jkim11@bnl.gov)

2023/12/04

Approach – Beampipe Impact Study at B0

• How to estimate beampipe size: $15(20)\sigma$ -distance based on IP-6 beam parameters

• **Transverse beam size (**
$$\sigma$$
) is defined as

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + D_{x,y}\frac{\Delta p}{p}}$$

where ϵ : Emittance at z=0, β : Beta function at z=B0, D : Momentum dispersion at z=B0, $\frac{\Delta p}{n}$: Momentum spread at z=0

18 GeV on 275 GeV	Momentum Dispersion (D ^{B0})	Emittance X (ϵ_x^*) [mm]	Emittance Y(ϵ_y^*) [mm]	Beta function Χ (β _x ^{в0}) [mm]	Beta function Υ (β _y ^{B0}) [mm]	Momentum spread (∆p/p)*	σ_{1x} [mm] σ_{1y} [mm]	σ_{15x} [mm] σ_{15y} [mm]	σ_{20x} [mm] σ_{20y} [mm]
IP-6 ep High Divergence	8.e-4	18.e-6	1.6e-6	52000	575000	6.8e-4	0.96747121 0.95916659	14.512068 14.387499	19.349424 19.183332
18 GeV on 110 GeV	Momentum Dispersion (D ^{B0})	Emittance X (ϵ_x^*) [mm]	Emittance Y(ϵ_y^*) [mm]	Beta function X (β_x^{B0}) [mm]	Beta function Υ (β _y ^{в0}) [mm]	Momentum spread (∆p/p)*	σ_{1x} [mm] σ_{1y} [mm]	σ_{15x} [mm] σ_{15y} [mm]	σ _{20x} [mm] σ _{20y} [mm]
IP-6 eAu	8.e-4	43.2e-6	5.8e-6	52000	575000	6.2e-4	1.4987997 1.8261984	22.481996 27.392976	29.975994 36.523968

Momentum Dispersion (D) and **Beta functions**(β_x and β_y) at **B0 position** in table are values from IP-6 beam optics file

B0 Beampipe

- How to estimate beampipe size: $15(20)\sigma$ -distance based on IP6 beam parameters
 - **Transverse beam size (\sigma)** is defined as

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + D_{x,y}\frac{\Delta p}{p}}$$

where ϵ : Emittance at z=0, β : Beta function at z=B0, D : Momentum dispersion at z=B0, $\frac{\Delta p}{n}$: Momentum spread at z=0

18 GeV	σ_{1x} [mm]	σ_{15x} [mm]	σ_{20x} [mm] σ_{20y} [mm]
on 275 GeV	σ_{1y} [mm]	σ_{15y} [mm]	
IP6 ep High Divergence	0.96747121 0.95916659	14.512068 14.387499	19.349424 19.183332

18 GeV on 110 GeV	σ_{1x} [mm] σ_{1y} [mm]	σ_{15x} [mm] σ_{15y} [mm]	σ_{20x} [mm] σ_{20y} [mm]
IP6 eAu	1.4987997	22.481996	29.975994
	1.8261984	27.392976	36.523968

Beampipe thickness = 2 mm Beampipe material = Beryllium (transparency for particles) (Will try other materials ex. aluminum, stainless, copper)

Approach – pT Acceptance

- By tagging final-state proton, it directly connects to momentum transfer, t, measurement
 - Investigate low pT acceptance cutoffs
- Used simulated ep DVCS 1M events each
 - Three beam energy combinations: ep 18 \times 275, 10 \times 100, and 5 \times 41 GeV²
 - S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/18x275/DVCS.3.18x275.hepmc
 - S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/10x100/DVCS.1.10x100.hepmc
 - S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/5x41/DVCS.2.5x41.hepmc
- Passed through afterburner IP8 ep high divergence configuration
 - IP8 crossing angle (35 mrad) and IP6 ep high divergence beam effects based on **EIC CDR table 3.3**
- Accepted events for scattered protons <u>*reconstruction purpose</u>*
 - B0 tracker: all four layers have hits
 - OMD: **two layers** (actual four layers as redundancy) have hits
 - RPSF: two layers have hits > 10σ safe distance based on *ep β @ IP6 interaction point (z = 0)*

W/O Beampipe at BO DVCS 18 GeV on 275 GeV

*Each histogram fills individually

Scattered protons are very forward (< 5 mrad), measured in Roman Pot at secondary focus (96.77 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/ Beampipe (r_{B0 tracker inner} = r_{beampipe outer} = 3.5 cm) at B0 DVCS 18 GeV on 275 GeV

*Each histogram fills individually

Scattered protons are very forward (< 5 mrad), measured in Roman Pot at secondary focus (96.79 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/ Beampipe (r_{B0 tracker inner} = r_{beampipe outer} = 3.0 cm) at B0 DVCS 18 GeV on 275 GeV

*Each histogram fills individually

Scattered protons are very forward (< 5 mrad), measured in Roman Pot at secondary focus (96.77 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/O Beampipe at B0 DVCS 10 GeV on 100 GeV

*Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (10.89 % and 79.46 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/ Beampipe ($r_{B0 \text{ tracker inner}} = r_{beampipe \text{ outer}} = 3.5 \text{ cm}$) at B0 DVCS 10 GeV on 100 GeV

*Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (12.01 % and 75.06 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

Beampipe (r_{B0 tracker inner} = r_{beampipe outer} = 3.0 cm) at B0 **W**/ DVCS 10 GeV on 100 GeV

Log Scale *Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (21.29 % and 71.30 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/O Beampipe at B0 DVCS 5 GeV on 41 GeV

*Each histogram fills individually

Scattered protons measured in both *B0 and Roman Pot at secondary focus (70.62 % and 17.00 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/ Beampipe (r_{B0 tracker inner} = r_{beampipe outer} = 3.5 cm) at B0 DVCS 5 GeV on 41 GeV

*Each histogram fills individually

Scattered protons measured in both *B0 and Roman Pot at secondary focus (71.61 % and 14.33 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

W/ Beampipe (r_{B0 tracker inner} = r_{beampipe outer} = 3.0 cm) at B0 DVCS 5 GeV on 41 GeV

*Each histogram fills individually

Scattered protons measured in both *B0 and Roman Pot at secondary focus (78.64 % and 13.63 % events accepted with 10σ safe distance cut based on ep β @ IP6* (= IP8*))

Approach – Incoherent Vetoing Efficiency

- Used simulated **BeAGLE** 801k events with $1 < Q^2 < 10$
 - **ePb 18**×**110 GeV incoherent** $J/\psi(\mu\mu)$ **events** $ePb \rightarrow e' + J/\psi(\mu\mu) + X$ (S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1.hepmc)
- Passed through afterburner IP8 eAu configuration
 - IP8 crossing angle (35 mrad) and w/ and w/o IP6 eAu beam effects based on EIC CDR table 3.5
- Discarded events having more than one electron in final state with $\eta < -1$
- Calculated 10σ safe distance cut based on *eAu β IP8 RPSF*
- Tagged events for nuclear breakups <u>*tagging purpose</u>*
 - o ZDC Hcal: any registered RAW hits
 - RPSF: one layer (closet to 2nd focus) has registered RAW hits outside 10σ safe distance
 - OMD: two layers (actual four layers as redundancy) have registered RAW hits
 - o B0 Tracker: at least two out of four layers have registered RAW hits
 - B0 Ecal: energy of all hits greater than 100 MeV
 - ZDC Ecal: energy of all hits greater than 100 MeV

W/ Beam effects t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

W/ Beam effects Remaining Events

Veto Selections	Survived Events	
All events	800,964	
Events with one scattered electron identified	712,362 (100.0 %)	
ZDC HCAL tagged	41,768 (5.86331 %)	
+ RPSF tagged	7,231 (1.01507 %)	
+ OMD tagged	6,781 (0.951904 %)	
+ B0 tracker tagged	5,599 (0.785977 %)	
+ B0 ecal tagged	3,504 (0.491885 %)	
+ ZDC ECAL tagged	1,771 (0.24861 %)	

With 10σ safe distance cut based on ***ep** β **@ IP8 RPSF* 1,771 of 800,964 events were NOT vetoed**

W/ Beam effects t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

W/ Beam effects Remaining Events

Veto Selections	Survived Events	
All events	800,964	
Events with one scattered electron identified	712,362 (100.0 %)	
ZDC HCAL tagged	41,768 (5.86331 %)	
+ RPSF tagged	3,708 (0.520522 %)	
+ OMD tagged	3,472 (0.487393 %)	
+ B0 tracker tagged	2,834 (0.397831 %)	
+ B0 ecal tagged	1,790 (0.251277 %)	
+ ZDC ECAL tagged	886 (0.124375 %)	

With 10σ safe distance cut based on *exact Wan's IP8 sigma cut* 886 of 800,964 events were NOT vetoed

W/O Beam effects t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

W/O Beam effects Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Veto Selections	Survived Events	
All events	800,978	
Events with one scattered electron identified	712,384 (100.0 %)	
ZDC HCAL tagged	41,752 (5.86088 %)	
+ RPSF tagged	15,755 (2.21159 %)	
+ OMD tagged	14,456 (2.02924 %)	
+ B0 tracker tagged	11,960 (1.67887 %)	
+ B0 ecal tagged	7,651 (1.074 %)	
+ ZDC ECAL tagged	3,837 (0.538614 %)	

With 10σ safe distance cut based on *exact Wan's IP8 sigma cut* 3,837 of 800,964 events were NOT vetoed

W/O Beam effects with NOT taking out crossing angle in t calculation

t distribution

With 10σ safe distance cut based on ***exact Wan's IP8 sigma cut***

W/O Beam effects with taking out crossing angle in t calculation

t distribution

With 10σ safe distance cut based on ***exact Wan's IP8 sigma cut***

Summary

- o Implemented B0 beampipe
 - Looked beampipe impact and different apertures impact
 - Used different aperture sizes based on IP6 beam parameters
- Using exclusive DVCS events, understanding acceptance gap in pT between B0 and RPSF
 - ~250 MeV for 5 GeV on 41 GeV and ~550 MeV for 10 GeV on 100 GeV
 - After adding beampipe, it has some fuzzy shape of acceptance gap since beampipe is circular shape and beam is elliptical shape
 - Difficult to remove acceptance gap, but complementary detector may make different acceptance gap region so that it covers all pT acceptance for scattered proton using both IP6 and IP8
- Using BeAGLE incoherent events, understanding tagging power to understand background to coherent events with $1 < Q^2 < 10$ and t < 0.2
 - Vetoing power reaches 10^{-2} at t ~ 0.02 coherent diffractive minima
 - Compared Wan's IP8 study result with exact same sigma cut, but still showed discrepancy. Details needs to be confirmed and discussed. Ex) t reconstruction

Backup

W/ Beam effects t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

J. KIM

W/ Beam effects Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Veto Selections	Survived Events
All events	800,964
Events with one scattered electron identified	712,362 (100.0 %)
ZDC all components (HCAL & ECAL) tagged	15,557 (2.18386 %)
+ RPSF tagged	2,677 (0.375792 %)
+ OMD tagged	2,549 (0.357824 %)
+ B0 tracker tagged	2,250 (0.315851 %)
+ B0 ecal tagged	1,286 (0.180526 %)

With 10σ safe distance cut based on ***ep** β **@ IP8 RPSF* 1,286 of 800,964 events were NOT vetoed**

Approach – Switch Off Beam Effects

- Current version of eic/afterburner
 - Apply crossing angle "and" beam effects
- How to switch off beam effects and only apply crossing angle
 - \circ Create my own configuration and build my own after burner version
 - By making all variables to be very small number (10⁻¹⁴) except for crossing angle (when I entered all zeros, then code broken and won't run at all)
 - Add "preset_ip8_eau_110x18_nobeameffect"
- Compare histograms between before-burned and after-burned w/ or w/o beam effects
 - Final-state protons (from eAu breakups; used incoherent events)

Configurations

w/ beam effects

w/o beam effects

cfg.crossing_angle_hor = -35e-3; // Crossing angle in horizontal plane [rad]
cfg.crossing_angle_ver = 1e-14; // Crossing angle in vertical plane [rad]

cfg.hadron_beam.beta_crab_hor = 1e-14; cfg.lepton_beam.beta_crab_hor = 1e-14;

// Beam divergence

cfg.hadron_beam.divergence_hor = 1e-14; cfg.hadron_beam.divergence_ver = 1e-14; cfg.lepton_beam.divergence_hor = 1e-14; cfg.lepton_beam.divergence_ver = 1e-14;

// Beam beta star [mm]

cfg.hadron_beam.beta_star_hor = 1e-14; cfg.hadron_beam.beta_star_ver = 1e-14; cfg.lepton_beam.beta_star_hor = 1e-14; cfg.lepton_beam.beta_star_ver = 1e-14;

// RMS emittance

cfg.hadron_beam.rms_emittance_hor = 1e-14 * nm; cfg.hadron_beam.rms_emittance_ver = 1e-14 * nm; cfg.lepton_beam.rms_emittance_hor = 1e-14 * nm; cfg.lepton_beam.rms_emittance_ver = 1e-14 * nm;

// RMS bunch length

cfg.hadron_beam.rms_bunch_length = 1e-14 * cm; cfg.lepton_beam.rms_bunch_length = 1e-14 * cm;

return cfg;

Pseudo-Rapidity

Scattering Angle

Azimuthal Angle

Transverse Momentum

Momentum

