

ePIC Performance on Coherent J/ψ Diffractive Pattern

Cheuk-Ping Wong

12-04-2023

Momentum Resolution (e⁻)

I tried to increase the length of the backward tracking system too, but does not work as I expected

Transverse Momentum Resolution (e⁻)

t Resolution

No muon ID smearing

0.1

0.15

0.15

0.2

0.2

Itl [GeV²]

ltl [GeV²]

10

10

10

10

evt

10

10

0

0.05

0.05

Brookhaven⁻ National Laboratory

0.1

Momentum Smearing

- Gaussian smearing on momentum
- Uniform momentum resolution independent of momentum or pseudorapidity
- No muon ID smearing

$\eta_{J/\psi}$ v.s. $\eta_{scattered e}$ (1 < Q^2 < 10 GeV²)

$\eta_{J/\psi}$ v.s. $\eta_{scattered e}$ ($Q^2 > 10$ GeV²)

Summary

- Trying to implement all possible improvements in the backward tracking system
- Need to achieve <1% momentum resolution at pseudorapidity below -3

To-Do: Unfolding

Scintillating Fiber?

LHCb SciFi (https://arxiv.org/pdf/1710.08325.pdf)

- Scintillating fiber diameter of 250um
- <70um spatial resolution Cavet: the tracking system of LHCb includes multiple subsystems and has a long expansion volume
- SiPM sensors are cooled down to -40 degrees Celsius

- Questions:
 - How many layers of scintillating fiber can we afford, material budget-wise?
 - What is the smallest scintillating fiber in diameter in the market?

Backup

Simulation Setup

<u>Sartre</u>

- eAu at 18x110 GeV
- $Q^2 \ge 1 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

<u>Detector</u>

- ePIC-2023.10.0
- epic_craterlake_18x110_Au.xml
- B=1.7 T or 2T

Data Selections and Reconstructions

Single electron selection

If the electron $\eta < -2.5$, use Ecal energy instead of momentum from tracking

J/ψ reconstruction

- |pid| = 11
- Opposite charges cut on dilepton pair
- If the reconstructed mass is within 2 standard deviations, the e+ and e- are labeled as " J/ψ decayed" dielectrons

Q²

- Scattered electrons must be negatively charged
- " J/ψ decayed" electrons are excluded
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5$
- Require information of the proton beam
- Better t resolutions

Backward Momentum Resolution (µ^{+/-})

Barrel Momentum Resolution (µ^{+/-})

Forward Momentum Resolution (µ^{+/-})

Backward Transverse Momentum Resolution (µ^{+/-})

Barrel Transverse Momentum Resolution (µ^{+/-})

Forward Transverse Momentum Resolution (µ^{+/-})

