Update on IP-8 Simulation: Vetoing Efficiency

Jihee Kim (jkim11@bnl.gov)

2023/12/11

Short Updates

- Kong created Github repository for EIC 2nd detector named **D2EIC**
 - Implemented IP-8 forward hadron lattice
 - Implemented forward roman pot at 2nd focus
 - Detector acceptance tested after implementation seems to make sense
 - (Work in progress) other forward detector implementations
 - B0, OMD, and ZDC

National Laboratory

• Randy sent IP-8 lattice study for proton 275 GeV configuration

18 GeV on 275 GeV		Momentum Dispersion (D ^{secondary focus})	Emittance X (ϵ_x^*) [mm]	Emittance Y(ϵ_y^*) [mm]	Beta function X ($\beta_x^{\text{secondary focus}}$ [mm]	Beta function Y ($\beta_y^{secondary focus}$) [mm]	Momentum spread $(\Delta p/p)^*$
IP8 ep High Divergence	Old	0.382	18.e-6	1.6e-6	2289.454596	4538.713168	6.8e-4
	New	<mark>0.465446661</mark>	18.e-6	1.6e-6	<mark>498.024969</mark>	<mark>3443.354186</mark>	6.8e-4
🔝 Brookhaven [.]					Bas	ed on ep high divergence 10	<mark>) GeV on 275 GeV</mark>

Summary 10σ Safe Distance Cut

 For IP8, used IP6 beam conditions except for momentum dispersion (D) and Beta function @ secondary focus from Randy's

	σ_{1x}	σ_{1y}
ep β @ IP8* (= IP6*)	0.121077	0.0193225
ep β @ IP8 RPSF	0.203642	0.0867277
eAu β @ IP8* (= IP6*)	0.198869	0.0216527
eAu β @ IP8 RPSF (<mark>Old</mark>)	0.314867	0.1629770
Wan's IP8 Study	0.328283	0.085217
eAu β @ IP8 RPSF (<mark>New</mark>)	0.147659	0.142338

Above 10σ values based on **ep** high divergence **even for eAu vetoing efficiency study IP8 eAu lattice study will be available soon (Randy is currently working on it)**

Beam Parameters for IP-8 Study

Randy provided momentum dispersion (D) and Beta function @ secondary focus

18 GeV on 110 GeV	Momentum Dispersion (D ^{secondary focus})	Emittance X (ϵ_x^*) [mm]	Emittance Y(ϵ_y^*) [mm]	Beta function X (β_x) [mm]	Beta function Y (β_y) [mm]	Momentum spread (∆p/p)*
	0.382	43.2e-6	5.8e-6	$\beta_x^{*(z=0)} = 910$	$\boldsymbol{\beta}_{y}^{*(z=0)} = 40$	6.2e-4
IP8 eAu	0.382	43.2e-6	5.8e-6	β_x Secondary focus 2289.454596	$m{eta}_y$ Secondary focus 4538.713168	6.2e-4
	<mark>0.465446661</mark>	43.2e-6	5.8e-6	$\frac{\beta_x}{498.024969}$	β _y Secondary focus 3443.354186	6.2e-4

Based on ep high divergence 10 GeV on 275 GeV

Approach – Incoherent Vetoing Efficiency

- Used simulated **BeAGLE** 801k events with $1 < Q^2 < 10$
 - **ePb 18**×**110 GeV incoherent** $J/\psi(\mu\mu)$ **events** $ePb \rightarrow e' + J/\psi(\mu\mu) + X$ (S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1.hepmc)
- Passed through afterburner IP8 eAu configuration
 - IP8 crossing angle (35 mrad) and w/ and w/o IP6 eAu beam effects based on EIC CDR table 3.5
- Discarded events having more than one electron in final state with η < -1
- Calculated 10σ safe distance cut based on old/new eAu β IP8 RPSF and Wan's
- Tagged events for nuclear breakups <u>*tagging purpose</u>*
 - o ZDC Hcal: any registered RAW hits
 - RPSF: one layer (closet to 2nd focus) has registered RAW hits outside 10σ safe distance
 - OMD: **two layers** (actual four layers as redundancy) have registered RAW hits
 - o B0 Tracker: at least two out of four layers have registered RAW hits
 - B0 Ecal: energy of all hits greater than 100 MeV
 - ZDC Ecal: energy of all hits greater than 100 MeV

W/O Beam effects t distribution – Wan's 10σ Cut

W/O Beam effects t distribution – Wan's 10σ Cut

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

With 10σ safe distance cut based on *exact Wan's values* IP-8 DD4hep: 3,830 of 711,368 events were NOT vetoed (0.538%) IP-8 EicRoot: 685 of 1322778 events were NOT vetoed (0.05%)

W/O Beam effects

t distribution – IP-8 Old 10 σ Cut

W/O Beam effects

t distribution – IP-8 New 10 σ Cut

W/ Beam effects t distribution – IP-8 Old 10σ Cut

W/ Beam effects t distribution – IP-8 New 10σ Cut

Next Steps

- Keep communicating with Randy
 - $\circ~$ ep 18×275 GeV², 10×100 GeV², and 5×41 GeV² coming up
 - \circ $\,$ eAu lattice study coming up
 - IP8 interaction point coordinate Randy confirmed(x, z) = (0.65 m, 0.057673 m) or (0.65 m, -0.2975 m)
 - This affects all coordinates of magnets and detectors
 - Some magnet field values, for instance dipole BXDS01B
 - This will affect on particle trajectories. Will confirm each hadron lattice element and update if needed and re-evaluate vetoing efficiency
- Understand discrepancy between Wan's study and this study (w/o beam effects)
 - Direct comparison (code-wise) in vetoing process on detector response

Backup Slides

Beam Spot Study

Used **IP6 ep high divergence beam RMS** $\Delta \theta$ h/v [μ rad] = 150/150 (EIC CDR table 3.3) Ran single particle gun and Mimic "**1** σ beam profile" to take a look