

ePIC Performance on Coherent J/ψ Diffractive Pattern

Cheuk-Ping Wong

12-11-2023

Detector Simulation Tracking Performance

Transverse Momentum Resolutions with e⁻

 Flat at high p_T
→ Possibly not a resolution issue, but a material budget issue
Is it the air?

Momentum Resolutions with e⁻

Material Budget

pingwong 9:13 AM

Here the material budget of the central beampipe that I generated. It is clearly wrong. But I am not sure what I did wrong. I did the following.

npsim --runType vis --macroFile run1.mac --compactFile \$DETECTOR_PATH/

Inside run1.mac:

/run/initialize

/control/matScan/phi 10 0 360. deg /control/matScan/theta 180 0 180. deg /control/matScan/scan

I didn't change the world material from Air to Vacuum, so x/x0 is very high. But the shape is what puzzles me.

Æ	mat_BP.pdf
ھ	PDF 14KB

w

Wouter Deconinck (he/him) 9:21 AM Yeah, that's strange.

s sh

shyamkumar 11:22 AM

@pingwong This was an example I given using GEANT4 but I always do using GeoManager and I shared that script with @matt_posik only which is a bit simpler. If @Wouter Deconinck (he/him) want we can upload to epic can be useful for detector implementation. Again GEANT4 and GeoManager uses same approach. *A Edited*

If you want I can explain in the next meeting if it can be helpful.

pingwong 11:30 AM

@shyamkumar Can you share the script?

shyamkumar 12:02 PM

Sorry, I forget to tell about script we have already an official script in EICRecon somewhere which can be used for which there is already instructions.

pingwong 3:41 PM

Can you point me to the script in EICRecon?

New Messages

shyamkumar 4:53 AM May be @Shujie Li can tell this?

Unfolding

Unfolded t Distributions

- No muon ID
- Bayesian unfolding, 1 iteration
- Training sample of 200k events
- Unfolded histogram with 1.6M events
- Too good. Way too good

$1 < Q^2 < 10 \text{ GeV}^2$

https://indico.bnl.gov/event/18385/contributions/73101/att achments/46047/77833/Steinberg_EICUG20230216.pdf

Summary

- Momentum resolution shows minimal changes with a long tracking disks distance (6m)
- Trying to generate material budgets
- First look at unfolding: possibly over-trained

Backup

Simulation Setup

Sartre

- eAu at 18x110 GeV
- $Q^2 \ge 1 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

Detector

- epic-2023.10.0
- epic_craterlake_18x110_Au.xml

Data Selections and Reconstructions

Single electron selection

If the electron $\eta < -2.5$, use Ecal energy instead of momentum from tracking

 J/ψ reconstruction

- |pid| = 11
- Opposite charges cut on dilepton pair

Q²

- Scattered electrons must be negatively charged
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5$
- Require information of the proton beam
- Better t resolutions

Backward Momentum Resolution (µ^{+/-})

Barrel Momentum Resolution (µ^{+/-})

Forward Momentum Resolution (µ^{+/-})

Backward Transverse Momentum Resolution (µ^{+/-})

Barrel Transverse Momentum Resolution (µ^{+/-})

Forward Transverse Momentum Resolution (µ^{+/-})

