Update on IP-8 Simulation: EIC Detector-II Meeting Slides t calculation with Wan's IP-8 study

Jihee Kim (jkim11@bnl.gov)

2023/12/18

Update on EIC 2nd detector study with Far-Forward Acceptance and Vetoing Efficiency

Jihee Kim (jkim11@bnl.gov)

2023/12/19

Introduction

• One of golden channels for EIC Detector-2 LDRD program

- Study exclusive processes to access transverse spatial structure and fluctuations of gluons in target
- Experimentally, measured spectra in vector meson production contain sum of coherent and incoherent processes
- Separate coherent from incoherent process
 - By tagging nuclear fragments using far-forward detectors, understand background of coherent vector meson productions (ex. J/ψ)

\circ Looking into more details on

- Far-forward detector acceptance
- pT acceptance of scattered protons
- Vetoing efficiency for incoherent events

IP-8 Far-Forward Layout

Implemented in **IP-8 Forward Hadron Lattice** and IP-6 detector configuration

pre-conceptual design

Approach – Detector Acceptance

• Far-Forward region

- Particles with $\theta < \sim 37 \text{ mrad} (2.1^{\circ})$
- Tag charged hadrons (protons) or neutral particles (neutrons, photons)
- IP8 has larger crossing angle (35 mrad) and secondary focus far downstream

o Single particle simulation

- **B0 Tracker + Calorimeter** for detecting protons and photons
 - Proton energy: 80 GeV < E_p < 120 GeV and 5 < θ_{MC} < 20 mrad
- Off-Momentum Detector for detecting protons from nuclear breakup
 - Proton energy: 123.75 GeV (45%) < E_p < 151.25 GeV (55%) and **0** < θ_{MC} < **5** mrad
- Zero Degree Calorimeter for detecting photons and neutrons
 - Neutron energy: $E_n = 275 \text{ GeV} (*\theta_{MC} < 10 \text{ mrad})$
- o Roman Pot at Secondary Focus for detecting charged particles from nuclear breakup
 - Proton energy: $E_p = 275$ GeV and $0 < \theta_{MC} < 5$ mrad

Zero Degree Calorimeter

About 99.98 % events were accepted (θ_{MC} upto 5 mrad)

Roman Pots at Secondary Focus

Single Proton E = 275 GeV $0 < \theta_{MC} < 5$ mrad

About 95.4 % events were accepted and observed losses at higher theta (polar angle) Clipping occurs in quadrupoles for protons

Clipping on Acceptance of Far-Forward

Kindly Provided by Alex Jentsch using EicRoot Simulation Event Display

Reference from https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf

123.75 - 151.25 GeV Protons

DD4hep simulation event display was not successful...

J. KIM

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) 0 < $\theta_{\rm MC}$ < 5 mrad

About 67.42 % events were accepted

Hadron lattice in simulation set to be 275 GeV proton and clipping occurs in quadrupoles for protons

B0 Tracker

Single Proton 80 GeV < E < 120 GeV 5 < θ_{MC} < 20 mrad

About 88.94 (93.6) % events were accepted requiring four layers (more than two layers)

Approach – pT Acceptance

- By tagging final-state proton, it directly connects to momentum transfer, t, measurement
 - Investigate pT acceptance at B0 and RPSF
- Used simulated ep DVCS* 1M events each
 - Three beam energy combinations: ep 18 \times 275, 10 \times 100, and 5 \times 41 GeV²
- Passed through afterburner IP-8 ep high divergence configuration
 - IP-8 crossing angle (35 mrad) and IP-6 ep high divergence beam effects based on EIC CDR table 3.3

• Accepted events for scattered protons <u>reconstruction purpose</u>

- B0 tracker: **all four layers** have hits
- OMD: **two layers** (actual four layers as redundancy) have hits
- RPSF: two layers have hits > 10σ safe distance based on ep β @ IP8 RPSF

*S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/18x275/DVCS.3.18x275.hepmc | *S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/10x100/DVCS.1.10x100.hepmc *S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/5x41/DVCS.2.5x41.hepmc

W/O Beampipe at BO DVCS 18 GeV on 275 GeV

*Each histogram fills individually

Scattered protons are very forward (< 5 mrad), measured in Roman Pot at secondary focus (93.33 % events accepted with 10σ safe distance cut based on ep 18 GeV on 275 GeV β @ IP-8 RPSF)

W/O Beampipe at B0 DVCS 10 GeV on 100 GeV

*Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (10.89 % and 77.71 % events accepted with 10σ safe distance cut based on ep 10 GeV on 100 GeV β @ IP-8 RPSF)

W/O Beampipe at B0 DVCS 5 GeV on 41 GeV

*Each histogram fills individually

Scattered protons measured in both *B0 and Roman Pot at secondary focus (70.62 % and 16.87 % events accepted with 10*σ* safe distance cut based on ep 5 GeV on 41 GeV β @ IP-8 RPSF)

Approach – Beampipe Impact Study at B0

- How to estimate beampipe size: $15(20)\sigma$ -distance based on IP-6 beam parameters
 - **Transverse beam size (** σ **)** is defined as $\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2}$

where ϵ : Emittance at z=0, β : Beta function at z=B0, D: Momentum dispersion at z=B0, $\frac{\Delta p}{n}$: Momentum spread at z=0

18 GeV	σ_{1x} [mm]	σ_{15x} [mm]	σ_{20x} [mm] σ_{20y} [mm]
on 275 GeV	σ_{1y} [mm]	σ_{15y} [mm]	
IP-6 ep High Divergence	0.96747121 0.95916659	14.512068 14.387499	19.349424 19.183332

Ο

r_{B0 tracker inner} = 3.5 cm

r_{B0 tracker inner} = 3.0 cm

18 GeV	σ_{1x} [mm]	σ_{15x} [mm]	σ_{20x} [mm] σ_{20y} [mm]
on 110 GeV	σ_{1y} [mm]	σ_{15y} [mm]	
IP-6 eAu	1.4987997	22.481996	29.975994
	1.8261984	27.392976	36.523968

W/O Beampipe at B0 DVCS 10 GeV on 100 GeV

*Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (10.89 % and 77.71 % events accepted with 10σ safe distance cut based on ep 10 GeV on 100 GeV β @ IP-8 RPSF)

W/ Beampipe (r_{B0 tracker inner} = r_{beampipe outer} = 3.5 cm) at B0 DVCS 10 GeV on 100 GeV

Log Scale

*Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (12.01 % and 73.32 % events accepted with 10σ safe distance cut based on ep 10 GeV on 100 GeV β @ IP-8 RPSF)

W/ Beampipe ($r_{B0 \text{ tracker inner}} = r_{beampipe \text{ outer}} = 3.0 \text{ cm}$) at B0 DVCS 10 GeV on 100 GeV

*Each histogram fills individually

Scattered protons measured in both B0 and *Roman Pot at secondary focus (21.29 % and 69.62 % events accepted with 10σ safe distance cut based on ep 10 GeV on 100 GeV β @ IP-8 RPSF)

DVCS 10 GeV on 100 GeV

Approach – Incoherent Vetoing Efficiency

- Understand background to coherent I/ψ production Ο
- Used **BeAGLE** ePb 18×110 GeV incoherent $J/\psi(\mu\mu)^*$ 801k events with 1 < Q² < 10 Ο
- Passed through afterburner IP-8 eAu configuration Ο
 - IP-8 crossing angle (35 mrad) and IP-6 eAu beam effects based on **EIC CDR table 3.5** 0
- Discarded events having more than one electron in final state with $\eta < -1$ Ο
- Calculated 10 σ safe distance cut based on eAu β @ IP-8 RPSF Ο
 - **Transverse beam size** (σ) is defined as $\sigma_{x,y} = \int (\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2)$ Ο

where ϵ : Emittance at z=0, $~\boldsymbol{\beta}$: Beta function at z=RPSF , D : Momentum dispersion at z=RPSF, $\frac{\Delta p}{n}$: Momentum spread at z=0

- Tagged events for nuclear breakups tagging purpose Ο
 - ZDC Hcal: any registered RAW hits 0
 - RPSF: one layer (closet to 2nd focus) has registered RAW hits outside 10σ safe distance Ο
 - OMD: two layers (actual four layers as redundancy) have registered RAW hits Ο
 - B0 Tracker: at least two out of four layers have registered RAW hits Ο
 - B0 Ecal: energy of all hits greater than **100 MeV** Ο
 - ZDC Ecal: energy of all hits greater than 100 MeV Ο

*S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1.hepmc 20

Nuclear Breakups Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

	Nuclear Breakups at Final State	Number of Events
Generated Level	Only Neutrons	7.55 %
	Only Protons	0.0004 %
	Only Photons	3.24 %
	Neutrons + Protons	3.28 %
	Neutrons + Photons	43.98 %
	Protons + Photons	2.24 %
	Neutrons + Protons + Photons	39.72 %

94.53 % of events have **neutrons** in nuclear breakups

t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

J. KIM

t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable

Found to be enough to suppress incoherent contribution at three minima Vetoing efficiency is about 99.99%

Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Veto Selections	Surviving Events		
All events	801,464		
Events with one scattered electron identified and $ \eta_{J/\psi} < 4$	711,795 (100.0 %)		
ZDC HCAL tagged	41,751 (5.86559 %)		
+ RPSF tagged	2,785 (0.391264 %)		
+ OMD tagged	2,484 (0.348977 %)		
+ B0 tracker tagged	1,994 (0.280137 %)		
+ B0 ecal tagged	1,257 (0.176596 %)		
+ ZDC ECAL tagged	589 (0.0827485 %)		

With 10*σ* safe distance cut based on *eAu β @ IP-8 RPSF* 589 of 801,464 events were NOT vetoed

Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Summary

- With basic components are in-place in EIC 2nd detector DD4hep simulation, checked IP8 acceptance on each far-forward detectors (B0, OMD, ZDC, and RPSF)
 - Acceptance and things can change as this is still pre-conceptual design (magnets, space, etc)
- Using exclusive DVCS events, understanding acceptance gap in pT between B0 and RPSF
 - After adding beampipe, it has some fuzzy shape of acceptance gap since beampipe is circular shape and beam is elliptical shape and acceptance gap depends on aperture size
 - Difficult to remove acceptance gap, but complementary detector may make different acceptance gap region so that it covers all pT acceptance for scattered proton using both IP-6 and IP-8
- $_{\odot}$ Using BeAGLE incoherent events, evaluating vetoing power to understand background to coherent events with 1 < Q² < 10 and t < 0.2
 - Used more realistic beam optics for IP8 ep(eAu) especially for secondary focus
 - \circ Vetoing power reaches ~10⁻³ at three coherent diffractive minima

Next Steps

- Recently more realistic beam optics for IP-8 thanks to Randy
 - Update forward beamline this will affect on detector acceptance
 - Coordinates of magnets and magnetic fields
 - Expect small impact in acceptance. Need to re-evaluate
 - Will include into D2EIC github repo
 - o eAu lattice study coming up (so far, ep lattice study with different beam configurations)
- Look into events without beam effects
 - Current sample with beam effects has more (transverse) momentum-kick
 - Evaluate vetoing power on detector response
- Implement beampipe between OMD-ZDC-RPSF to study beampipe impact

t Calculation using Wan's Data

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi + X$

Used different t calculations ($1 < Q^2 < 10 \text{ GeV}^2$)

- t read off from PYTHIA directly ("t_hat"): 1.02M events used
- t calculated from four-momentum of scattered electron and vector meson (decaying J/ψ): 0.99M events used

t Calculation

Wan data without beam effects: MC - t hat Wan data without beam effects: $MC - t (Q^2 - VM)$ Jihee data with beam effects: $MC - t (Q^2 - VM)$ Jihee data without beam effects: $MC - t (Q^2 - VM)$

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi + X$ $1 < Q^2 < 10 \text{ GeV}^2$

Using *final-state particles from BeAGLE hepmc file, t values are not much difference with or without beam effects. However, vetoing power shows otherwise, very different (comparing one another on following slides #3 and 4) *taken out crossing angle effects when calculating t with/without beam effect data

W/O Beam effects t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

W/ Beam effects t distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Vetoing Power Update

• Randy sent IP-8 lattice study for ep 18GeV on 275 GeV configuration

18 GeV on 110 GeV		Momentum Dispersion (D ^{secondary focus})	Emittance X (ϵ_x^*) [mm]	Emittance Y(ϵ_y^*) [mm]	Beta function X ($\beta_x^{\text{secondary focus}}$ [mm]	Beta function Y ($\beta_y^{\text{secondary focus}}$ [mm]	Momentum spread $(\Delta p/p)^*$
(IP8 eAu N	Old	0.382	43.2e-6	5.8e-6	2289.454596	4538.713168	6.2e-4
	New	0.465446718	43.2e-6	5.8e-6	498.013008	3392.376638	6.2e-4

• Transverse beam size (σ) calculation at secondary focus

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2}$$

where ϵ : Emittance at z=0, β : Beta function at z=RPSF, D: Momentum dispersion at z=RPSF, $\frac{\Delta p}{p}$: Momentum spread at z=0

	σ_{1x}	σ_{1y}
eAu β @ IP8 RPSF (<mark>Old</mark>)	0.314867	0.1629770
Wan's IP8 Study	0.328283	0.085217
eAu β @ IP8 RPSF (<mark>New</mark>)	0.146677	0.140271

W/ Beam effects t distribution – IP-8 Old 10σ Cut

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

W/ Beam effects t distribution – IP-8 New 10σ Cut

Summary

- Checked different t calculations using Wan's IP-8 study data
 - Known in t difference between direct BeAGLE and final-state information
 - Using final-state particles from BeAGLE hepmc file, t values are not much difference with or without beam effects
 - However, it makes a big difference in vetoing power because sample with beam effect has transverse momentum kicks (making easier particle getting out of beam envelope)
- Updated vetoing power based on latest version of IP-8 lattice study
 - Momentum dispersion at secondary focus became larger, but x and y beta function values are smaller especially in x (quadrupole before secondary focus squeezes in x)
 - In transverse beam size calculation, beta function term is more dominate. Even momentum dispersion became larger, in general new 1 σ safe distance is much smaller than old beam parameters
 - With latest values from IP-8 lattice study, vetoing power is enough to suppress incoherent contribution at three minima (vetoing efficiency is about 99.99%)

