

ePIC Performance on Coherent J/ψ Diffractive Pattern

Cheuk-Ping Wong

12-18-2023

Last Update

The 600cm air is a lot of material budget

Detector Setup (Backward Tracking)

- Magnetic field of 1.7T
- World volume: air
- 5 silicon disks
 - Silicon thickness of 40um
 - Support/service using aluminum (t=150um) and carbon fiber (t=120um)
 - Grid size: 20um x 20um
- MPGD
 - Grid size: 150x150um
 - z=110cm

Transverse Momentum Resolution (Backward e-)

Cheuk-Ping Wong

Brookhaven National Laboratory

Multiple scattering remains as the • dominate factor in momentum resolution

- Need to improve the resolution • by a factor of 3
 - Stronger B field
 - Longer expansion volume
 - Reduce detector material budget
 - Reduce beam pipe material ٠

Transverse Momentum Resolution (Backward e-)

Momentum Resolutions (Backward e-)

Summary

Even with vacuum as world volume, magnetic field 2T and an expansion volume of ~2.5m, we still need to reduce the material budget by a factor of 3.

Backup

Simulation Setup

Sartre

- eAu at 18x110 GeV
- $Q^2 \ge 1 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

Detector

- epic-2023.10.0
- epic_craterlake_18x110_Au.xml

Analytical Calculation of Momentum Resolution

** For an equal distance, spatial resolution, multiple scattering tracker **

Error from detector design

$$\frac{\Delta p}{p_{res}} = \frac{12 \cdot \sigma_{pix} \cdot p}{0.3BL^2} \sqrt{\frac{5}{N+5}}$$

Error from multiple scattering

$$\frac{\Delta p}{p}_{ms} = \frac{0.0136}{0.3BL \cdot \frac{p}{\sqrt{m^2 + p^2}}} \sqrt{X_0/X}$$
$$\approx \frac{0.0136}{0.3BL} \sqrt{X_0/X} \qquad \text{for } p \gg m$$

$$\frac{\Delta p}{p_{tot}} = \sqrt{\left(\frac{\Delta p}{p_{res}}\right)^2 + \left(\frac{\Delta p}{p_{ms}}\right)^2}$$

https://arxiv.org/abs/1805.12014

Event Display: Default Tracking System

Event Display: Backward All Silicon Disks

