Update on IP-8 Simulation

Jihee Kim (jkim11@bnl.gov) 2024/01/22

What's New

- Updated IP-8 hadron lattice
 - Dipole field (BXDS01A and BXDS01B)
 - IP-8 interaction point
 - Position of all hadron lattice in z
 - Kept same position of all far-forward detectors
 - Merged changes on D2EIC GitHub (thanks to Kong)
- Re-checked far-forward detector acceptance using single particle simulation
- Re-checked vetoing efficiency for incoherent events
- Further checked difference in vetoing efficiency between Wan's and my study
- (Work in progress) Started working on transfer matrix to reconstruction forward protons at roman pot at secondary focus

Far-Forward Detector Acceptance and Vetoing Efficiency

Zero Degree Calorimeter

Single Neutron E = 275 GeV $0 < \theta_{MC} < 10$ mrad

About 99.98 % (99.96 % after changes) events were accepted (θ_{MC} up to 5 mrad)

Roman Pots at Secondary Focus

Single Proton E = 275 GeV $0 < \theta_{MC} < 5$ mrad

About 95.4 % (95.3 % after changes) events were accepted

Off Momentum Detectors

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) 0 < $\theta_{\rm MC}$ < 5 mrad

About 67.42 % (66.83 % after changes) events were accepted

B0 Tracker

Single Proton 80 GeV < E < 120 GeV 5 < θ_{MC} < 20 mrad

About 88.94 – 93.6 % (88.99 – 93.67 % after changes) events were accepted requiring four layers or more than two layers

Jihee KIM

t Distribution (Before Changes)

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Jihee KIM

t Distribution (After Changes)

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Found to be worse vetoing efficiency at very low t after changes

t Distribution (Before Changes)

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Found to be enough to suppress incoherent contribution at three minima Vetoing efficiency is about 99.99%

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable

t Distribution (After Changes)

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable

Found to be worse vetoing efficiency at very low t after changes, but still be enough to suppress incoherent contribution at three minima

Remaining Events

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Veto Selections	Surviving Events	
	Before Changes	After Changes
All events	801,464	797,464
Events with one scattered electron identified and $ \eta_{J/\psi} < 4$	711,795 (100.0 %)	708,248 (100.0 %)
ZDC HCAL tagged	41,751 (5.86559 %)	41,666 (5.88297 %)
+ RPSF tagged	2,785 (0.391264 %)	2,315 (0.326863 %)
+ OMD tagged	2,484 (0.348977 %)	2,202 (0.310908 %)
+ B0 tracker tagged	1,994 (0.280137 %)	1,961 (0.27688 %)
+ B0 ecal tagged	1,257 (0.176596 %)	1,205 (0.170138 %)
+ ZDC ECAL tagged	589 (0.0827485 %)	637 (0.0899402 %)

With 10σ safe distance cut based on *eAu β @ IP-8 RPSF*

Found to be worse vetoing efficiency at very low t after changes, but still be enough to suppress incoherent contribution at three minima

Will proceed to implement beampipe between OMD-ZDC-RPSF to study "beampipe impact" more realistic (next step)

Vetoing Efficiency Comparison to Wan's : shown different vetoing power and to understand difference between two studies

Reminder: t Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi + X$

Reminder: t Distribution

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi + X$

Comparison with Wan's IP-8 Study

- Located BeAGLE input ROOT files used in Wan's IP-8 study (thanks to Alex)
- Converted into HepMC file and passed through afterburner (thanks to Kolja)
 - \circ $\,$ Applied proper crossing angle and beam effects as same as my study
 - While converting to HepMC, I got some warnings saying
 "Warning: I am a hadron or lepton with status 2, but I have too many parents. Discarding the older one"
- Ran Wan's input in DD4hep simulation for apple-to-apple comparison
- Use same script to calculate vetoing efficiency
 - When t calculation, used decaying J/Psi directly and same scattered electron procedure
- Compare two results
- FYI, I couldn't run entire her input data, but almost tried to have similar total number of events for vetoing efficiency calculation

t Distribution (Wan's)

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + I/\psi(\mu\mu) + X$

t Distribution (Jihee's)

BeAGLE 18x110 GeV² Incoherent events $ePb \rightarrow e' + J/\psi(\mu\mu) + X$

Remaining Events

Veto Selections	Surviving Events	
	Wan	Jihee
All events	801,500	797,464
Events with one scattered electron identified and $ \eta_{J/\psi} < 4$	709,263 (100.0 %)	708,248 (100.0 %)
ZDC HCAL tagged	45,004 (6.34518 %)	41,666 (5.88297 %)
+ RPSF tagged	28 (0.00394776 %)	2,315 (0.326863 %)
+ OMD tagged	27 (0.00380677 %)	2,202 (0.310908 %)
+ B0 tracker tagged	17 (0.00239685 %)	1,961 (0.27688 %)
+ B0 ecal tagged	9 (0. 00126892%)	1,205 (0.170138 %)
+ ZDC ECAL tagged	1 (0.000140991 %)	637 (0.0899402 %)

With 10σ safe distance cut based on *eAu β @ IP-8 RPSF*

Found to be Wan's input (i.e. final state nuclear fragments) very different so that it affects final vetoing efficiency

Transfer Matrices at Roman Pot 2nd Focus (Work in progress)

: to scattered proton reconstruction

Transfer Matrix at Roman Pot 2nd Focus

- Momentum reconstruction requires transfer matrices to describe particle motion through the magnets
- Ran three trajectories to define transfer matrix at roman pot at secondary focus
 - Central protons with $\theta_{x, IP} = 0$ mrad and $\frac{\Delta p}{p}_{IP} = 0$ to obtain offsets between two planes

• Protons with
$$\theta_{x, IP} = 1$$
 mrad and $\frac{\Delta p}{p}_{IP} = 0$
• Protons with $\theta_{x, IP} = 0$ mrad and $\frac{\Delta p}{p}_{IP} = 1\%$
* units in mm and mrad
* units in mm and mrad

Focusing on purely x-dependent part of matrix assuming x and y are independent for now

$$\begin{pmatrix} \mathbf{4.7} & \mathbf{0.13} \\ \mathbf{0.001} & -\mathbf{0.6305} \end{pmatrix} \begin{pmatrix} \frac{\Delta p}{p} \\ \theta_x \end{pmatrix}_{\mathrm{IP}} = \begin{pmatrix} x \\ \theta_x \end{pmatrix}_{\mathrm{DET}}$$

Work in progress: y-dependent part of matrix *very simple approach to start with*

Next Steps

- Implement beampipe between OMD-ZDC-RPSF to study beampipe impact
- Continue evaluating transfer matrices for RPSF to describe particle motion through magnets toward detector for very forward final-state proton reconstruction
 - Move onto t reconstruction, $t = |p p'|^2$. Maybe start with DVCS ep events
 - See if it works and then move on more refined approach

 How to upload updated IP-8 hadron lattice information on EIC Detector 2 wiki page? *Renee asked at last detector II meeting*

