An Update on Afterburner

Jihee Kim (jkim11@bnl.gov) 2024/02/26

Where It All Started

o Goal

- o "afterburner" sanity check while using eA sample in far-forward simulation
- Verify it shows still consistent after transformation

$\circ~$ What "afterburner" does

- Head-on frame used in most event generator (no crossing angle nor beam effects)
- Introduces beam crossing and any other beam effects to events
- Translate from head-on frame to lab frame (detector design/simulation)
 - Electron is along z axis (solenoid axis is aligned with electron beam) and Hadron takes full crossing angle
 - Boost and rotation on all particles being stored in events
- o "afterburner" ep sample already validated with PYTHIA8 beam effects simulation
- $\circ~$ This approach will be shown today
 - 1) Take "afterburner" ep and eA samples
 - 2) Undo what "afterburner" does on samples (reverse transformation/translation) from lab to head-on event generator frame: calculate Boost + Rotation
 - 3) Compare with nominal MC generator sample

Samples – ep and eA

- Check <u>a simple case (i.e. PYTHIA ep sample)</u> to compare resulting particle distributions before and after "afterburner"
 - Used **PYTHIA6 SIDIS ep 18×275 GeV²** samples from Brian
 - PYTHIA6 generator HepMC3 file (Before "afterburner")
 - HepMC3 file after "afterburner" with IP-6 ep configuration ("afterburner")
 - Files are located in directory below /gpfs02/eic/bpage/home/EPIC/officialSimu/pythia6/sidis_minbias/HEPMCFILES
- Then, check with IP-8 BeAGLE ePb sample
 - Used **BeAGLE v1.03.02 ePb 18×110 GeV²** samples from Kong
 - BeAGLE generator HepMC3 file (Before "afterburner")
 - HepMC3 file after "afterburner" with IP-8 eAu configuration ("afterburner")
 - Files are located in directory below /gpfs02/eic/ztu/Analysis/BeAGLE/ePb_diffractive_VM/18x110_Q2_1_100/beagle_v1.03.02_ePb_1 8x110_Q2_1_100_batch_1

What to compare and How

- o Compare between
 - Nominal sample from MC generator
 - "afterburner" sample
 - o "afterburner" sample with reverse transformation
- Reverse transformation to "afterburner" sample
 - Calculate boost-rotation using beam particles
 - Apply all particles listed
 - Make crossing angle and beam effects removed
 - Transform to nominal distribution (original MC generator file)

PYTHIA6 ep 18×275 GeV²

PYTHIA6 ep 18×275 GeV² Sample

All Final-state Particles: ϕ vs η

- Shown all final-state particles (status == 1) regardless of PID
- "afterburner" (middle): introduces a hot spot at $\eta \sim 4.3$ (crossing angle = 25 mrad) and $\phi = \pm \pi$ where IP-6 hadron beam is aligned along
- o "afterburner" with reverse transformation (right): transformed to nominal distribution: what we expect!

PYTHIA6 ep 18×275 GeV² Sample

All Final-state Particles: P_x, P_v, and P_z

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

PYTHIA6 ep 18×275 GeV² Sample

All Final-state Particles: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

BeAGLE ePb 18×110 GeV²

All Final-state Particles: ϕ vs η

- Shown all final-state particles (status == 1) regardless of PID
- "afterburner" (middle): introduces a hot spot at $\eta \sim 4$ (crossing angle = 35 mrad) and $\phi = 0$ for IP-8 hadron beam is aligned along (opposite to IP-6)
- o "afterburner" with reverse transformation (right): transformed to nominal distribution: what we expect!

All Final-state Particles: P_x, P_y, and P_z

¹ bin (i.e. 500 GeV)

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

All Final-state Particles: P_x, P_v, and P_z

Zoomed into 300 GeV

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

All Final-state Particles: P_z and P_t

- Two hot spots are seen
- \circ (p_T,p_z) ~ (0.2 GeV, 0.2 GeV): turned out to be soft photons (a few 100 MeV) from de-excitations! (lower hot spot)
- \circ (p_T,p_z) ~ (0.2 GeV, ~100 GeV): turned out to be evaporated neutrons! (upper hot spot)
- Checked with BeAGLE output file to look up origin flag for final-state particles

All Final-state Particles: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Proton: P_x, P_v, and P_z

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Proton: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Neutron: P_x , P_y , and P_z

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

BeAGLE v1.03.02 ePb 18×110 GeV² Sample Final-state Neutron: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Photon: P_x, P_y, and P_z

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Photon: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Nuclear Remnants: P_x, P_y, and P_z

¹ bin (i.e. 500 GeV)

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Nuclear Remnants: P_x, P_y, and P_z

Zoomed into 300 GeV

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Final-state Nuclear Remnants: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

t Reconstruction: $(Q^2 - VM)$

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>
- o t is invariant

Scattered Electron: P_x, P_y, and P_z

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Scattered Electron: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Vector Meson: P_x, P_y, and P_z

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- \circ Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Vector Meson: P_t , η , and ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1/integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- o <u>"afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution</u>

Summary

- Checked simple ep sample between before and after "afterburner" and confirmed that transform does what we expect. Good.
- Checked ePb sample between before and after "afterburner" and confirmed that transform does what we expect. Good.
- From discussion with Brian and Alex, we should summarize this transformation procedure and it would be good to add into "beam effect simulation" note.

Back Up Slides

BeAGLE v1.03.02 ePb 18×110 GeV² Sample All Final-state Particles: P_x, and P_v

 \circ (p_x,p_y) ~ (0.2 GeV, 0.2 GeV): turned out to be soft photons (a few 100 MeV) from de-excitations!