An Update on Afterburner

Jihee Kim (jkim11@bnl.gov)

2024/02/26

Where It All Started

- Goal
- "afterburner" sanity check while using eA sample in far-forward simulation
- Verify it shows still consistent after transformation
- What "afterburner" does
- Head-on frame used in most event generator (no crossing angle nor beam effects)
- Introduces beam crossing and any other beam effects to events
- Translate from head-on frame to lab frame (detector design/simulation)
- Electron is along z axis (solenoid axis is aligned with electron beam) and Hadron takes full crossing angle
- Boost and rotation on all particles being stored in events
o "afterburner" ep sample already validated with PYTHIA8 beam effects simulation
- This approach will be shown today

1) Take "afterburner" ep and eA samples
2) Undo what "afterburner" does on samples (reverse transformation/translation) from lab to head-on event generator frame: calculate Boost + Rotation
3) Compare with nominal MC generator sample

Samples - ep and eA

- Check a simple case (i.e. PYTHIA ep sample) to compare resulting particle distributions before and after "afterburner"
- Used PYTHIA6 SIDIS ep $18 \times 275 \mathrm{GeV}^{2}$ samples from Brian
- PYTHIA6 generator HepMC3 file (Before "afterburner")
- HepMC3 file after "afterburner" with IP-6 ep configuration ("afterburner")
- Files are located in directory below
/gpfs02/eic/bpage/home/EPIC/officialSimu/pythia6/sidis_minbias/HEPMCFILES
- Then, check with IP-8 BeAGLE ePb sample
- Used BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ samples from Kong
- BeAGLE generator HepMC3 file (Before "afterburner")
- HepMC3 file after "afterburner" with IP-8 eAu configuration ("afterburner")
- Files are located in directory below
/gpfs02/eic/ztu/Analysis/BeAGLE/ePb_diffractive_VM/18x110_Q2_1_100/beagle_v1.03.02_ePb_1 8x110_Q2_1_100_batch_1

What to compare and How

e

PYTHIA6 ep 18×275 GeV 2

PYTHIA6 ep $18 \times 275 \mathrm{GeV}^{2}$ Sample

All Final-state Particles: $\boldsymbol{\phi}$ vs $\boldsymbol{\eta}$

Nominal
from MC Generator

"afterburner"

"afterburner"
transform
 with reverse transformation

- Shown all final-state particles (status ==1) regardless of PID
- "afterburner" (middle): introduces a hot spot at $\eta \sim 4.3$ (crossing angle $=25 \mathrm{mrad}$) and $\phi= \pm \pi$ where IP-6 hadron beam is aligned along
- "afterburner" with reverse transformation (right): transformed to nominal distribution: what we expect!

All Final-state Particles: $\mathbf{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}$, and $\mathbf{P}_{\mathbf{z}}$

p_{x}
x-component of momentum

p_{y}
y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

All Final-state Particles: $\mathbf{P}_{\mathrm{t}}, \boldsymbol{\eta}$, and ϕ
 P_{t}
 η
 ϕ

transverse momentum

pseudo-rapidity

azimuthal angle

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE ePb 18×110 GeV 2

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

All Final-state Particles: $\boldsymbol{\phi}$ vs $\boldsymbol{\eta}$

- Shown all final-state particles (status $==1$) regardless of PID
- "afterburner" (middle): introduces a hot spot at $\eta \sim 4$ (crossing angle $=35 \mathrm{mrad}$) and $\phi=0$ for IP- 8 hadron beam is aligned along (opposite to IP-6)
- "afterburner" with reverse transformation (right): transformed to nominal distribution: what we expect!

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

All Final-state Particles: $\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathbf{y}}$, and $\mathbf{P}_{\mathbf{z}}$

p_{x}
x-component of momentum

p_{y}
y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

All Final-state Particles: $\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathbf{y}}$, and $\mathbf{P}_{\mathbf{z}}$

p_{x}
x-component of momentum

p_{y}
y-component of momentum

p_{z} z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

All Final-state Particles: $\mathbf{P}_{\mathbf{z}}$, and $\mathbf{P}_{\mathbf{t}}$

Nominal from MC Generator

"afterburner"

"afterburner" with Correction

- Two hot spots are seen
- ($\mathrm{p}_{\mathrm{T}}, \mathrm{p}_{\mathrm{z}}$) $\sim(0.2 \mathrm{GeV}, 0.2 \mathrm{GeV}$): turned out to be soft photons (a few 100 MeV) from de-excitations! (lower hot spot)
- $\left(p_{T}, p_{z}\right) \sim(0.2 \mathrm{GeV}, \sim 100 \mathrm{GeV})$: turned out to be evaporated neutrons! (upper hot spot)
- Checked with BeAGLE output file to look up origin flag for final-state particles

All Final-state Particles: $\mathbf{P}_{\mathrm{t}}, \boldsymbol{\eta}$, and ϕ

P_{t} transverse momentum

η
pseudo-rapidity

ϕ
azimuthal angle

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Proton: P_{x}, P_{y}, and P_{z}
 p_{x}

x-component of momentum

y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Proton: $\mathbf{P}_{\mathbf{t}}, \boldsymbol{\eta}$, and $\boldsymbol{\phi}$

P_{t}
transverse momentum

η

ϕ azimuthal angle

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Neutron: $\mathbf{P}_{\mathrm{x}}, \mathrm{P}_{\mathbf{y}}$, and $\mathrm{P}_{\mathbf{z}}$
 p_{x}
 p_{y}

x-component of momentum

y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Neutron: $\boldsymbol{P}_{\mathrm{t}}, \boldsymbol{\eta}$, and $\boldsymbol{\phi}$

P_{t}
transverse momentum

η

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Finaimstate photon: $p_{p_{x}} \underset{p_{y}}{ } \boldsymbol{p}_{y}$, and \boldsymbol{p}_{z}

x-component of momentum

y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Photon: $P_{t}, \boldsymbol{\eta}$, and $\boldsymbol{\phi}$

P_{t}
transverse momentum

η

ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Nuclear Remnants: $\mathbf{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}$, and $\mathrm{P}_{\mathbf{z}}$

p_{x}
x-component of momentum

p_{y}
y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Final-state Nuclear Remnants: $\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathbf{y}}$, and $\mathbf{P}_{\mathbf{z}}$

p_{x}
x-component of momentum

p_{y}
y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

Final-state Nuclear Remnants: $\boldsymbol{P}_{\mathrm{t}}, \boldsymbol{\eta}$, and ϕ

P_{t}
transverse momentum

η
pseudo-rapidity

ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

t Reconstruction: $\left(Q^{2}-V M\right)$

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution
- t is invariant

Scattered Electron: P_{x}, P_{y}, and P_{z}
 p_{x}
 p_{y}

x-component of momentum

y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

Scattered Electron: $\boldsymbol{P}_{\mathrm{t}}, \boldsymbol{\eta}$, and $\boldsymbol{\phi}$

η

ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Vector Meson: $\mathbf{P}_{\mathrm{p}_{\mathrm{x}}}, \mathbf{P}_{\mathrm{y}_{p_{y}}}$, and \mathbf{P}_{z}
 x-component of momentum
 y-component of momentum

p_{z}
z-component of momentum

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

Vector Meson: $\boldsymbol{P}_{\mathbf{t}}, \boldsymbol{\eta}$, and $\boldsymbol{\phi}$

P_{t}
transverse momentum

η

ϕ

- Color scheme: Nominal, "afterburner", and "afterburner" with correction
- Normalized histograms by scaling by 1 /integral and taking width into account
- Took "afterburner" (blue) distribution and applied correction \rightarrow resulting is (red) distribution
- "afterburner" with reverse transformation (red) distribution transformed to nominal (shaded gray) distribution

Summary

- Checked simple ep sample between before and after "afterburner" and confirmed that transform does what we expect. Good.
- Checked ePb sample between before and after "afterburner" and confirmed that transform does what we expect. Good.
- From discussion with Brian and Alex, we should summarize this transformation procedure and it would be good to add into "beam effect simulation" note.

Back Up Slides

BeAGLE v1.03.02 ePb $18 \times 110 \mathrm{GeV}^{2}$ Sample

All Final-state Particles: P_{x}, and P_{y}
 Nominal
 "afterburner"

- $\left(p_{x}, p_{y}\right) \sim(0.2 \mathrm{GeV}, 0.2 \mathrm{GeV})$: turned out to be soft photons (a few 100 MeV) from de-excitations!

