

Electron-Ion Collider (EIC) 2nd Detector Program at BNL

Jihee Kim (jkim11@bnl.gov)

on behalf of the BNL EIC 2nd Detector Group

Nuclear Particle Astrophysics (NPA) Seminar@ Wright Lab Yale University04/18/2024

Outline

- \circ Introduction
- EIC 1st detector
- o EIC 2nd detector
 - Physics program
 - Detector technologies
- BNL efforts (toward EIC 2nd detector)
- Summary

Introduction

(Hadron-Electron Ring Accelerator: 1992 – 2007)

HERA Facility at DESY

- Electron–proton collider
- Scattering experiments of high energy electrons on protons (Deep Inelastic Scattering (DIS))
- H1, ZEUS, HERMES, and HERA-B experiments
- First polarized electron probes interior of proton – "microscope"
 - Study structure of protons and properties of quarks
 - Foundation for next generation of particle physics laboratory

Golden Process: DIS

Deep Inelastic Scattering (DIS)

EM process (well-understood) To probe gluons (no charge) easily measurable

Resolution power (Q²)

$$Q^2 = -q^2 = -(k - k')^2$$

4-momentum transfer from scattered electron

Momentum fraction of parton (x)

$$x = rac{Q^2}{2pq}$$
 Bjorken-x

Fraction of nucleon's momentum carried by struck quark

Results from HERA Facility at DESY

• Measured Proton structure function $F_2(x, Q^2)$

- Describes quark and anti-quark momentum distribution
- **Bjorken Scaling** $F_2(x, Q^2) \rightarrow F_2(x)$
 - Virtual photon interacts with a single essentially free quark, hence Q² independence
 - High x Flat (valence quarks)
 - Low x Bjorken Scaling broken!

Interacts with something else

Gluons!

Results from HERA Facility at DESY

- Structure functions allows us to extract quark and gluon distributions
- Parton Distribution Function (PDFs)
- The smaller momentum fraction, the greater the number of quark-antiquark pairs and **gluons** appearing in proton
- Proton is almost entirely gluons for x < 0.1

Big Question and Mystery

Nearly all visible matter is made up of quarks and gluons

Building block – proton

The Mass Puzzle ~ Higgs mechanism 1% of proton mass Quark-gluon dynamics are responsible for mass of proton

- How do quark and gluon dynamics generate the proton spin and mass?
- What are the emergent properties of dense systems of gluons?

ln x

Gluon Saturation

growing and it must

Gluon recombination = Gluon splitting

Saturation region is easier to be reached

 $Q_{\rm S}^2 \propto A^{1/3}$

More than the number $\frac{1}{2}$

Proton Spin Puzzle

Gluon density is

saturate

When $Q^2 < Q_s^2$,

in nuclei:

What is Needed to Answer Them

• Wide center-of-mass energy range

• Map out nucleon/nuclei structure from high to low x

\circ $\,$ Polarized electron and hadron beams

- Access to spin structure of nucleons and nuclei
- Access to 3D spatial and momentum structure of nucleon

• Nuclear beams

• Access highest gluon densities

• High luminosity

• Map 3D structure of nucleons and nuclei access to rare probes

What facility can have above requirements? **EIC!**

Electron-Ion Collider (EIC)

- First polarized electron- polarized ion collider based on existing RHIC facility
 - Collides electrons with proton and nuclei
- Based on the Golden process: **DIS**
- To be built at Brookhaven National Laboratory on Long Island, in partnership with Thomas Jefferson National Accelerator Facility
- Detector 1, called ePIC, sits on where RHIC STAR currently is located (IP-6)
- \circ Expects EIC startup in the early part of 2030s
- RHIC operations concludes in 2025 and then transition into EIC construction stage

Electron-Ion Collider (EIC)

- High Luminosity
 10³³ 10³⁴ cm⁻²s⁻¹
- $\circ~$ Variety of hadron/ion beams: p to Pb
- Wide center-of-mass energy range $\sqrt{s_{ep}} = 20 140 \text{ GeV}$
- Existing hadron storage ring 41, 100 – 275 GeV
- New electron rapid cycling synchrotron 1 Hz, 0.4 – 18 GeV
- \circ New electron storage ring 5-18 GeV
- Two Interaction Regions (IR-6 and IR-8)

EIC Kinematic Range

- First <u>polarized e</u> and <u>polarized p</u> and eA collisions
- o Large kinematic coverage substantially compared to past coverage
- Center-of-mass energy 20-140 GeV \rightarrow access to x and Q² over a wide range

EIC Scientific Foundation

- Scientific foundation for EIC is well-built on series of reports over two decades
 - Unique machine in the next decades EIC can address three profound questions about nucleons – neutrons and protons – and how they are assembled to form nuclei of atoms
 - 2023 LRP recommendation "we recommend the expeditious completion of the EIC as the highest priority for facility construction"
- Emphasized and recognized in EIC white paper, NSAC long-range plans, NAS study and report, EIC yellow report, etc

EIC Measurements

Deep-Inelastic scattering event kinematics – scattered electron or final-state particles

(Relativistic Heavy Ion Collider: 2000 – 2025)

EIC Measurements + RHIC Results

• First polarized proton machine

- STAR, PHENIX, and sPHENIX experiments
- Collisions of **pp**, **pA**, and **AA**
- Probe has complex structure comparing to electron probe
 - O Gluons can be accessed directly qq
 & gg → gluon fragmentation

\circ Why do we need different probes?

 To test and separate interaction dependent dynamics from intrinsic nuclear properties

- Physics program at RHIC has unique to hadronic collisions
- When combined with data from EIC it will provide a broad foundation to a deeper understanding → Synergy at a future EIC

EIC Conceptual Detector Design

Requires large rapidity (-4 < η < 4) coverage: Tracking, particle identification, electromagnetic and hadronic calorimetry

High precision low mass tracking Good e/h separation e/p/K separation on track level

Basically 4 pi detector (Large acceptance)

Detector components Tracking PID Calorimeters (ECAL & HCAL) Magnet solenoid

Aim to detect all final-state particles

EIC Interaction Region (ex IR-6)

Detector 1, called **ePIC**, sits at IP-6 **ePIC**: <u>https://wiki.bnl.gov/EPIC/index.php?title=Main_Page</u>

Requires specialized detectors integrated in the interaction region over 80 m

JIHEE KIM

Far-Forward Detector

Particles from nuclear breakup

Tagging of charged hadrons (protons/pions) or neutral particles (neutrons/photons) at very forward rapidity ($\eta > 4.5$)

EIC 1st Detector – ePIC

EIC 2nd Detector Motivation

Temple University, Philade

- Favors to accommodate the second detector and a second interaction region (ex HERA > 2 experiments)
- EIC 2nd detector working group activities
 - Prepare plans and build support for 2nd IR and detector
 - 1st international workshop on a 2nd detector for EIC 2023
 - EICUG 2nd detector meeting 2022 1^{ST INTERNATIONAL WORKSHOP ON A 2^{MD} DETECTOR FOR THE ELECTRON-ION COLLIDER}
 - Monthly WG meetings

EIC 2nd Detector Motivation

- Favors to accommodate the second detector and a second interaction region (ex HERA > 2 experiments)
- EIC 2nd detector working group activities
 - \circ ~ Prepare plans and build support for 2^{nd} IR and detector
 - 1st international workshop on a 2nd detector for EIC 2023
 - EICUG 2nd detector meeting 2022 ^{1ST INTERNATIONAL WORKSHOP ON A 2ND DETECTOR FOR THE ELECTRON-ION COLLIDER}
 - Monthly WG meetings
- A general-purpose collider detector to support full EIC program (complementarity)
 - Cross-checks & control of systematics
 - Detector technologies (mitigate risks and potential opportunities R&D)
 - Magnetic field
 - Broaden physics program (different physics focuses)
- Will be installed within few years after EIC Detector 1 is commission

Interaction Region

IR-6 vs IR-8

- Interaction regions: **similar, but different**
- Total crossing angle
 - o 25 mrad (IP-6)
 - o 35 mrad (IP-8)
- 2nd "beam optics" focus integrated in IR-8 layout
 - \circ Better detector acceptance expected in downstream low p_{T}
 - Especially in Far-Forward 2nd focus: exclusive, diffractive and tagging physics program using far-forward detectors

Opportunities at EIC 2nd Detector

EIC 2nd detector opportunity

- <u>General-purpose collider detector design</u> along with ePIC
 - To support full and broad physics program
- **Physics** discussion (golden channels)
 - Possible opportunity toward facility upgrades
 - Different physics focuses

• Detector discussion

- Promoting new detector ideas (EIC-related generic detector R&D)
- Mitigating risks by technology redundancy

Too much details EIC 2nd detector – Focus Measurements

	Measurement	Physics	Requirements and Challenges
	Double polarized e+D	Transversity in transverse polarized eD collisions →gluons' role in nuclear binding	
BNL group scope	Providing electro-weak data for fundamental studies: Positron beams Extends the capabilities of the physics with exclusive measurements		As for electron beams
	Real photon beams through Compton scattering	TBD	
	2nd focus integrated in the IR	Soft particles down to $p_T \sim 0$ GeV \rightarrow new understanding of the structure of nuclei	Extended auxiliary detector capabilities
	Fixed targets	Access to very high x physics \rightarrow complementary to STAR, LHCb and ALICE	Acceptance for fixed target kinematics

• Target to facility upgrades

Possibilities to have positron and photon beams available

• IR-8 unique approach

- Another beam optics focus in downstream
- Fixed target toward focused physics
 - o Complementary to STAR, LHCb and ALICE

EIC 2nd detector – Focus Measurements

	Measurement	Physics	Requirements and Challenges
			As for electron beams
			TBD
		Extended auxiliary detector capabilities	
			Acceptance for fixed target kinematics
Golden channel	Diffractive dijet	Wigner Distribution	forward scattered proton/nucleus low p _T particles
	DVCS on nuclei	Nuclear GPDs	forward scattered proton/nucleus High-resolution photon
	Baryon/Charge Stopping	Origin of Baryon number in QCD	PID low p _τ π/K/p
	F_2 at low x and Q^2	Probes transition from partonic to color dipole regime	Maximize Q ² tagger down to 0.1 GeV ² integrate into IR
	Coherent VM Production	Nuclear shadowing and saturation	High-resolution tracking for precision t reconstruction

Focus Concept 1 – Muon ID

- o In Detector 1 design
 - No dedicated muon ID detector
 - However, identify muon using ECAL and HCAL
- \circ Detection of μ^{\pm} in exclusive measurements
 - **Cleaner signal** in quarkonium reconstruction compared to e^{\pm}
 - Reduce ambiguity to the scattered electrons
- Complementary to ePIC: quarkonium reconstruction with different decay channels
- Example muon ID technology: KLM at the B factory in KEK
 - EIC Generic R&D programs: #18 KLM-type detector

(Far-Forward)

Focus Concept 2 – 2nd Focus in FF

- This is NOT detector design, but it is machine design that detector can be benefit from
- FF 2nd focus by additional magnet to focus beam
 - Higher probability to detect low p_T (< 250 MeV) particles around 45 m downstream from interaction point
 - Detects near-beam particles where get out beam envelop
 - Better nuclear breakup tagging
- Complementary to ePIC: diffractive and tagging physics analysis

Focus Concept 3 – Fixed Target

- Focuses high x and low Q²
- Complementary to CLAS12 measurements and other Jefferson Lab experiments
 - DVCS nuclear GPD
 - Spin physics with polarized gas target
- Complementary to fixed-target measurements at STAR, LHCb, and ALICE
 - o Constrain nuclear PDFs
 - Parton fragmentations
 - Nuclear shadowing
- Kinematics at fixed target is very different from one at colliding beams: Everything goes backward (electron-going direction)

Focus Concept 3 – Fixed Target

- Fixed-target setup along with beam-beam collisions configurations
 - STAR gold target inside beam pipe
- Detector subsystems needed
 - Full range (backward + central + forward) tracking system
 - Backward ECAL to measure scattered electron
 - e/h separation (PID) in backward region for hadron fragments
- o **Questions**
 - o Luminosity and statistical feasibility
 - Kinematics of fixed-target events
 - Material budget due to the beam pipe
 - o Machine induced background

Larger pseudo-rapidity coverage depends on the IP location

JIHEE KIM

EIC Detector R&D

- Generic EIC-related detector R&D program
 - o <u>https://www.jlab.org/research/eic_rd_prgm</u>
 - Annual proposal opportunity
- \circ Scope of this program
 - Aim at Detector 2 or upgrades of Detector 1
- Invites detector experts to discuss technology concepts and have open proposal review meeting
- Many technologies being developed in the program are now used in ePIC and available for Detector 2 – open door for new groups to join

		Calorimetry:					
2	Towar gap to	Towards a Few-Degree Calorimeter: bridging the Q ² gap to support the quest for gluon saturation		M. Arratia		UC Riverside	
3	Gener (Scint	Generic glass scintillators for EIC Calorimeters (ScintCalEIC) R&D		T. Horn		CUA	
4	Feasib	Feasibility of Organic Glass Scintillators for EIC ZDC		G. Carini, E. Aschenauer, A. Bolotnik		BNL Instr. Div., BNL Physics Div.	
18	Contir	Continuation of EIC KLM R&D Proposal		A. Vossen, W. W. Jacobs		Duke U., Indiana U. CEEM	
		PID (non-TOF):					
8	Pressu	Pressurized RICH		M. Contalbrigo		INFN Ferrara and U. Ferrara	
9	Z-Tagg	Z-Tagging Mini DIRC		C.E. Hyde, Wenliang Li		ODU, SBU and CFNS	
13	Perfor with le	Performance of GridPIX Detector in Magnetic Field with low mass and high efficiency CO2 cooling		T. K. Hemmick, P. Garg		SBU and CFNS, Yale U.	
20	Develo DIRC	Development of a Novel Readout Concept for an EIC DIRC		G. Kalicy, J. Schwiening		CUA, GSI	
	Gaseous Precision Timing and/or Tracking		g:				
	14	Development of High Precision and Eco-friendly N TOF Detector for EIC		IRPC Zhenyu Ye, Zhihon Ye		UI at Chicago, Tsinghua U.	
	16 Develop for Trac		ment of Double-sided Thin-Gap GEM-µRWELL king at the EIC Front End Electronics:		.L K. Gnanvo		ъ
			Design, Fabrication and testing of a multi-channel System on a chip for Low-Power High-Density High Timing Precision Readout ASIC for AC-LGADs (HPSo Silicon Detectors		L. Macchiarulo, B. Schumm v3)		Nalu Scientific, UC Santa Cruz
	1 A Fast Timing MAPS Detector for the EIC		X. Li		LANL		
	5 Slim Edge for LGADs		G. Giacomini		BNL Instr. Div.		
	6 For Large-Area Monolithic Active Pixel Sensors		ght S. Mandal, S. Rescia		BNL Instr. Div.		
			Other New Detectors:				
		17	Scintillator Fiber Trackers for the ZDC and off- momentum detectors		C. Ayerbe Gayoso		College of William and Mary
		19	Superconducting Nanowire Detectors for the	EIC	Sangbaek Lee, W. Armstrong		anl 30

BNL Efforts

- Diffractive pattern in optics (ex small angle scattering) Position of minima θ_i related to size R of screen
- Similarly, in coherent scattering cross section resembles diffractive pattern where $|t| \approx k^2 \theta^2$

 $F(b) = \frac{1}{2\pi} \int_0^\infty d\Delta \,\Delta J_0(\Delta b) \sqrt{\frac{d\sigma_{\text{coherent}}}{dt}}(\Delta)$ **Gluon Imaging** Incoherent/Breakup 0.1 (a) J/w bNonSat do/dt $t_i \sim 1/R^2$ Woods-Saxon 0.08 dp (q) / [E(p) dp Coherent/Elastic 0.06 0.04 0.02 -5 5 10 -10 0 II III b (fm) t2 t₃

- The Fourier transform of t spectrum \rightarrow gluon distribution in impact-parameter space
- Diffractive cross-section leads to spatial imaging of nucleons

EIC white paper

- Experimentally, measured spectra in vector meson production contain sum of coherent and incoherent processes
 - Low t coherent events dominate, but higher t incoherent events dominate
 - \circ Measuring coherent events is very challenging \rightarrow tagging nuclear breakups and vetoing incoherent events instead
 - Tracking resolution (p_T in particular) allows to measure position of dip patterns

BNL Physics Program – Golden Channel

- Focus exclusive, diffractive and tagging physics program
 - Coherent vector meson production
- Use central tracking and far-forward detector
 - o Muon ID
 - o Tracking detector
 - o Backward EM calorimeter
 - Inclusion of 2nd focus
 - Far-Forward acceptance
- o Improvement in |t| resolution
- Vetoing efficiency for incoherent events

Central Detector – Track and Calorimeter

Study by Cheuk-Ping Wong (BNL)

- Larger combinatorial background at lower spectrum due to bremsstrahlung radiation when using di-electron channel
- In calculation of t, needs scattered electron (backward) to be a precise

Central Detector – Track and Calorimeter

- Different tracker designs ex) Drift chamber/TPC to have more hit points to improve backward tracking performance
 Fast simulation to establish
- different tracker performance

- Require significant improvement in scattered electron measurements
- Beyond excellent backward tracking/ECAL with a momentum/energy resolution smaller than 2%

Far-Forward Detector – Incoherent Veto

- Separate coherent from incoherent process
 - By tagging nuclear fragments using farforward detectors, understand background of coherent vector meson productions (ex. J/ψ)
- Use Far-Forward detectors to measure
 - Charged hadrons (protons/pions)
 - Neutral particles (neutrons/photons)
- Evaluate veto efficiency using incoherent events

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable

Far-Forward Detector – Layout

Far-Forward Detector – Acceptance

- Detector acceptance
 - ZDC < 5.5 mrad uniformly ~100 %
 - <u>Needs to evaluate beam pipe impact</u> on neutrons

Roman Pot concept

- Roman Pot (@ 2nd focus)
 - Windows on pots depending on the beam optics (transverse beam size)
 - With 2nd focus makes difference in how close detector safely placed
- o Benefits
 - Larger acceptance in low p_T in particular
 - Reduce risk to miss nuclear fragments

Far-Forward Detector – Incoherent Veto

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable (0.0025 % inefficiency)

Found to be enough to suppress incoherent contribution at three minima Vetoing efficiency is > 99.99%

JIHEE KIM

Going Forward

- EIC 2nd detector comes few years after EIC Detector 1 starts
- Continue exploring detector technologies for 2nd detector
- Formulate preliminary detector requirements and concept
- Establish advantages in IP-8 and facility upgrade toward physics program benefits
- Toward EIC 2nd detector Yellow report in 2025 including physics scope, detector requirements, and detector concept/technology

Summary

- Community favors to have EIC 2nd detector as complimentary
 - o Cross-check, complimentary to ePIC, and new opportunities
- Small group, but working towards establishment on physics program
- Work with community toward building support for EIC 2nd detector
- Attract international collaborations
- At BNL, focus exclusive, diffractive and tagging physics program using central tracking and far-forward detectors

Going Far-Forward – 2nd Det Community

- Yale group is already engaged in simulations, R&D, design and prototyping of ePIC detector
 - pfRICH and Fwd Hcal in ePIC and R&D for future gaseous tracking detectors utilizing GEM and GridPix technologies
- Welcome to bring new input, approach, perspective, participation...
- EIC 2nd detector working group
 - Group page: <u>https://eicug.github.io/content/wg.html#detector-iiip8-group</u>
 - Conveners are: Charles Hyde (ODU), Sanbaek Lee (ANL), Simonetta Liuti (UVA), Pawel Nadel-Turonski (CFNS/SBU), Bjoern Schenke (BNL), Ernst Sichtermann (LBNL), Thomas Ullrich (BNL/Yale), Anselm Vossen (Duke/JLab)
 - Software coordinators: Wenliang Li (CFNS/SBU) and Zhoudunming Tu (BNL)
 - Convener mailing list: <u>eic-det2-conveners-l@lists.bnl.gov</u>

Backup Slides

EIC 2nd Detector Timeline

Reference schedule for 2nd IR and detector from EICUG meeting July 2023

← EIC 2nd detector

Results from HERA Facility at DESY

- Structure functions allows us to extract quark and gluon distributions
- Parton Distribution Function (PDFs)
- The smaller momentum fraction, the greater the number of quark-antiquark pairs and **gluons** appearing in proton
- Proton is almost entirely gluons for x < 0.1

