

Tracking Simulation using LDT

Cheuk-Ping Wong

05-13-2024

Last Update

Minimized material budget to focus on momentum resolution due to pixel resolutions

- Barrel: LDT results is close to DD4hep when $dr\phi = 20/\sqrt{12}$ um and $dz = 20/\sqrt{12}$ um
- Backward: du = 20 um and dv = 20 um looks ok

Momentum Resolutions

Same as last update, is minimal materials

- V3: $dr\phi = 20 \text{ um}, dr\phi = 20 \text{ um}, du = 20 \text{ um}, dv = 20 \text{ um}$
- V4: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um

Transverse Momentum Resolutions

Put in the Materials

Momentum Resolutions from DD4hep

- V4: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um, **minimal materials**
- V5: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um, proper materials

Backward region is more sensitive to material budget at low momentum

Momentum Resolutions

Multiple scattering has a larger impact on momentum resolutions in LDT

Transverse Momentum Resolutions from DD4hep

Transverse Momentum Resolutions

Summary

- Settle on the pixel resolutions/errors
 - dr $\phi = 20/\sqrt{12}$ um
 - $dz = 20/\sqrt{12}$ um
 - du = 20 um
 - dv = 20 um
- Put in proper materials in detector setup
 - Multiple scattering has a larger impact on momentum resolutions in LDT than in DD4hep

