t Reconstruction Using Roman Pot at 2nd Focus

Jihee Kim (jkim11@bnl.gov)

2024/05/20

t Resolution

Focusing $0.03 < t < 1.6 \text{ GeV}^2$

- Data sample was taken from
 - 1 M exclusive coherent events
 - S3/eictest/EPIC/EVGEN/EXCLUSIVE/DVCS/18x275/DVCS.3.18x275.hepmc
 - No radiative component included
- Passed through Afterburner to apply beam effects (angular divergence & momentum spread) and crossing angle
- Applied only crossing angle rotation for now, which means only beam effect included
- Regarding reconstruction of scattered proton
 - $_{\odot}$ Applied 10 σ cut based on IR-8 ep 18 GeV \times 275 GeV setting (92.5 %)

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2 \frac{1\sigma \text{ calculation}}{\exp\beta @ \text{ IR-8 RPSF (new)}} \frac{1\sigma_x}{0.146677} \frac{1\sigma_y}{0.140271}}$$

where ϵ : Emittance at z=0, β : Beta function at z=RPSF, D: Momentum dispersion at z=RPSF, $\frac{\Delta p}{p}$: Momentum spread at z=0

• Used inverse transfer matrices from single particle gun simulation to reconstruct scattered proton momentum and t was calculated from $t = (p' - p)^2$

t Calculation Using Proton (p, p')

t Resolution Bin Using Proton (p, p')

 $0.025 \le t_{MC} < 0.03$

JIHEE KIM

t Resolution Bin Using Proton (p, p')

JIHEE KIM

6

t Resolution Bin Using Proton (p, p')

t Resolution Bin Using Proton (p, p')

 $0.9 \le t_{MC} < 1.0$

∆t/t

t Resolution Bin Using Proton (p, p')

t Resolution Using Proton (p, p')

Comparison between True MC and Afterburn MC

*True MC: particle information from event generator *Afterburn (AB) MC: particles being boosted and rotated in afterburner, but un-rotated by crossing angle afterwards + still beam effects included

P_T and P_z Distribution

AB MC (red) driven by beam effects only from True MC (black)

Comparison between True MC/Afterburn MC and Reconstructed

*True MC: particle information from event generator
*Afterburn (AB) MC: particles being boosted and rotated in afterburner, but un-rotated by crossing angle afterwards + still beam effects included
*Reconstructed (Reco): particles being reconstructed by transport matrices

P_T Distribution

AB MC (solid right) smeared from True MC (solid left) at low p_T, in particular

P_z Distribution

AB MC (solid right) smeared from True MC (solid left)

Next Steps

 \circ Investigate an offset in P_z distribution

- \circ By switching off vertex smearing in z in afterburner
- Transport matrices were calculated under assumption of (0, 0, 0) at IP-8
- Check *t* distribution in
 Nominal, afterburned, and post-burned

Backup Slides

Spatial Imaging of Nucleon – Approach

Impact of reduced scattered proton acceptance

Brookhaven

National Laboratory

IR-8 2nd focus greatly improves forward acceptance

Excellent low-p_T acceptance for protons and light nuclei from exclusive reactions at very small *t*

Detection of target fragments

Opportunity to **probe large b** (outside nucleon's primary volume: not related to internal nucleon structure)

t Resolution

