

Tracking Simulation using LDT

Cheuk-Ping Wong

05-20-2024

Momentum Resolutions

Same as last update with minimal materials

- $dr\phi = 20 \text{ um}, dz = 20 \text{ um}, du = 20 \text{ um}, dv = 20 \text{ um}$
- **d** $r\phi = 20/\sqrt{12}$ um, $dz = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um

Transverse Momentum Resolutions

Same as last update with minimal materials

- ▲ $dr\phi = 20$ um, dz = 20 um, du = 20 um, dv = 20 um
- $dr\phi = 20/\sqrt{12}$ um, $dz = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um

- The analytical calculation suggests that pixel errors are treated differently between barrel and backward trackers in LDT?
- Analytical calculation prefers the Gaussian σ resolution from DD4hep at $\eta = -0.9, -1.4, -2.5$

Put in the Materials

Momentum Resolutions from DD4hep

• No beam pipe

Backward region is more sensitive to material budget at low momentum

Momentum Resolutions

- No beam pipe
- V4: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um, **minimal materials**
- V5: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um, proper materials

Transverse Momentum Resolutions from DD4hep

• No beam pipe

Transverse Momentum Resolutions

- No beam pipe
- V4: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um, **minimal materials**
- V5: $dr\phi = 20/\sqrt{12}$ um, $dr\phi = 20/\sqrt{12}$ um, du = 20 um, dv = 20 um, proper materials

• Analytical calculation prefers the Gaussian σ resolution from DD4hep at $\eta = -0.9, -1.4, -2.5$

χ^2 /ndf of the Fits from DD4hep

• No beam pipe

Moving Forward

- 1. Settle on the pixel resolutions/size in LDT, and then move forward to TPC implementation
 - Barrel: $dr\phi = 20/\sqrt{12}$ um, $dz = 20/\sqrt{12}$ um
 - Backward: du = 20 um, dv = 20 um

cannot implement TPC in the endcap in LDT

- 2. Implementation of gas detector in DD4hep? Modify the MPGD?
- 3. Use sPHENIX/STAR TPC as baseline
- 4. PHENIX Drift chamber in Fun4all
- 5. Ask IDEA about their drift chamber simulation in DD4hep?

