Vetoing Efficiency of Incoherent Diffractive Vector Meson Production at the Second Interaction Region at the EIC

Jihee Kim (jkim11@bnl.gov)

2024/07/22

Lehigh University, Bethlehem, PA, USA

EIC 2nd Detector Motivation

- o EIC Design
 - Two interaction points (IP-6 and IP-8)
 - Two interaction regions (IR-6 and IR-8)
- Detector 1, called ePIC, locates at IP-6
- Favors to accommodate the second detector and a second interaction region
- A general-purpose collider detector to support full EIC program (complementarity)
 - Cross-checks & control of systematics
 - Subdetector technologies
 - Magnetic field
 - Broaden physics program (different physics focuses)

EIC Interaction Regions

National Laboratory

Requires specialized detectors integrated in the interaction region over 80 m

3

IR Concept – 2nd Focus in Far-Forward

- By adding additional magnet to focus beam
 ~ 45 m downstream from interaction point
- This is NOT detector design, but it is machine design that detector can be benefit from
- \circ 2nd focus enables
 - Higher probability to detect low p_T (< 250 MeV) particles
 - Detects near-beam particles where get out beam envelop
- Complementary to ePIC: exclusive, tagging, and diffractive physics analysis

Physics Opportunities with 2nd Focus

- o 2nd focus in IR8 greatly improves forward acceptance
- Complementarity with Detector 1 (ePIC) @ IR-6
- Excellent low-p_T acceptance for protons and light nuclei from exclusive reactions at very low t
- o Detection of target fragments makes it possible
 - To veto breakup to study coherent process
 - To study final state when breakup occurs
- Coherent diffraction on heavy nuclei by vetoing breakups
- Rare isotopes detection and identification of heavy fragments

Order-of-magnitude improvement in forward acceptance

Physics Opportunities with 2nd Focus

- o 2nd focus in IR8 greatly improves forward acceptance
- Complementarity with Detector 1 (ePIC) @ IR-6
- Excellent low-p_T acceptance for protons and light nuclei from exclusive reactions at very low t
- o Detection of target fragments makes it possible
 - To veto breakup to study coherent process
 - To study final state when breakup occurs
- Coherent diffraction on heavy nuclei by vetoing breakups
- Rare isotopes detection and identification of heavy fragments
- Today, show study on capabilities of separating coherent from incoherent diffractive events by tagging far-forward nuclear fragments

Order-of-magnitude improvement in forward acceptance

Far-Forward Detector – Layout

Far-Forward Detector – Acceptance

Roman Pot (@ 2nd focus)

- \circ ZDC < 5 mrad uniformly ~100 %
- Exit window material impact on neutron acceptance

 Windows on pots depending on the beam optics (transverse beam size)

where

 ϵ : Emittance at z=0

 β : Beta function at z=RPSF

: Momentum spread at z=0

D : Momentum dispersion at z=RPSF

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2}$$

Brookhaven National Laboratory

© RPSF: Roman Pot at Secondary Focus 8

Roman Pot concept

Approach – Vetoing Efficiency

- To understand impact of 2nd focus on suppression of incoherent contribution (background to coherent J/ψ production)
- Used **BeAGLE** v1.03.02 *ePb* 18×110 GeV² J/ψ production (**1** < **Q**² < **10**) Incoherent events $ePb \rightarrow e' + J/\psi(ee/\mu\mu) + X$
- Applied 10σ safe distance cut based on eAu @ IR-8 Roman Pot at 2nd focus
- Tagged events for nuclear breakups <u>tagging purpose</u>
 - ZDC Hcal: any registered RAW hits
 - RPSF: one layer (closet to 2nd focus) has registered RAW hits outside 10σ safe distance
 - OMD: two layers (actual four layers as redundancy) have registered RAW hits
 - B0 Tracker: at least two out of four layers have registered RAW hits
 - B0 Ecal: energy of all hits greater than 100 MeV
 - ZDC Ecal: energy of all hits greater than 100 MeV

Nuclear Breakups Distribution

Nuclear Breakups at Final State	Number of Events
Only Neutrons	7.86 %
Only Protons	0.0001 %
Only Photons	3.45 %
Neutrons + Protons	3.18 %
Neutrons + Photons	45.41 %
Protons + Photons	1.85 %
Neutrons + Protons + Photons	38.25 %

About **95 %** of events have **neutrons**

JIHEE KIM

Far-Forward Detector – Incoherent Veto

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable (0.0025 % inefficiency)

Far-Forward Detector – Incoherent Veto

At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable (0.0025 % inefficiency)

ZDC hcal tagged (neutrons) RPSF tagged (protons, nuclear fragments) OMD tagged (charged particles) B0 tracker tagged (charged particles) B0 ecal tagged (photons) ZDC ecal tagged (photons)

Vetoing power > 10³

Found to be enough to suppress incoherent contribution at three minima Vetoing efficiency is >> 99.99%

Simplified Beam Pipe Implementation

Proposed pre-conceptual design of IR-8 Forward Hadron Lattice

Detector Acceptance Comparison: ZDC

Single Neutron E = 275 GeV and $0 < \theta_{MC} < 10$ mrad

Generated

In total, about 99.96 % (97.2 % with beam pipe/exit window) events were accepted. Full acceptance in θ_{MC} changed from up to 5 mrad to 4.5 mrad

JIHEE KIM

Detector Acceptance Comparison: RPSF

Single Proton E = 275 GeV and $0 < \theta_{MC} < 5$ mrad

Generated

In total, about 95.3 % (91.7 % with beam pipe) events were accepted. However, full acceptance up to 4.2 mrad stays the same

JIHEE KIM

Vetoing Efficiency Comparison

Vote Selections	Surviving Events			
veto Selections	Before Beam Pipe/Exit Window	After Beam Pipe/Exit Window		
All events	997,820	998,161		
Events with one scattered electron identified and $ \eta_{J/\psi} < 4$ and $1 < Q^2 < 10$	732,455 (100 %)	732,707 (100 %)		
ZDC HCAL tagged	41,848 (5.71339 %)	42,476 (5.79713 %)		
+ RPSF tagged	71 (0.00969343 %)	66 (0.00900769 %)		
+ OMD tagged	71 (0.00969343 %)	64 (0.00873473 %)		
+ B0 tracker tagged	30 (0.00409581 %)	30 (0.00409441 %)		
+ B0 ecal tagged	17 (0.00232096 %)	19 (0.00259312 %)		
+ ZDC ECAL tagged	4 (0.000546109 %)	10 (0.0013648 %)		

Summary and Outlook

- To explore physics opportunities by taking full advantage of 2nd focus
 - Implemented pre-conceptual design of IR-8 hadron beamline geometry and its field configuration + required far-forward detectors
- Using BeAGLE incoherent events (*ePb* 18×110 GeV² J/ψ production), evaluated vetoing power by tagging nuclear fragments using far-forward detectors
 - Found to be enough to suppress incoherent contribution at three diffractive minima
 - Shown that it can achieve vetoing efficiency of \gg 99.99 % (i.e. vetoing power ~ 10³)
- $\circ~$ Possible physics cases with improved forward acceptance, in particular of low p_T
 - Access low t where one can probe large impact parameter b (pion cloud)
 → change of transverse spatial distribution of gluons or quarks with x allows to help us to better understand mechanism of confinement
 - Provide possibility for constraining diffractive longitudinal structure function (F_L^D) ; Reggeon and Pomeron \rightarrow enables to study two Reggeon and Pomeron contributions at the same machine and may opens new opportunity to study separate from one contribution to another

Backup Slides

IP-8 Beam Parameters and 10σ Cut

From EIC CDR table 3.5 and Randy's eAu study

© RPSF: Roman Pot at Secondary Focus

eAu 18 GeV on 110 GeV	Momentum Dispersion (D ^{secondary focus})	Emittance X (ϵ_x^*) [mm]	Emittance Y(ϵ_y^*) [mm]	Beta function X ($\beta_x^{secondary focus}$) [mm]	Beta function Y ($\beta_y^{\text{secondary focus}}$ [mm]	Momentum spread $(\Delta p/p)^*$
Old ep 18 on 275 GeV ²	0.382	43.2e-6	5.8e-6	2289.454596	4538.713168	6.2e-4
New ep 18 on 275 GeV ²	0.465446718	43.2e-6	5.8e-6	498.013008	3392.376638	6.2e-4
New eAu 18 on 110 GeV ²	0.467582853	43.2e-6	5.8e-6	565.292559	1870.555797	6.2e-4

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2}$$

where

 ϵ : Emittance at z=0

 β : Beta function at z=RPSF

D : Momentum dispersion at z=RPSF

 $\frac{\Delta p}{p}$: Momentum spread at z=0

1σ calculation	$1\sigma_x$	$1\sigma_y$
ep β @ IR-8 RPSF (Old)	0.314867	0.1629770
ep β @ IR-8 RPSF (<mark>new</mark>)	0.146677	0.140271
eAu β @ IR-8 RPSF (<mark>new</mark>)	0.156271	0.104160

Nuclear Breakups Distribution

BeAGLE v1.01.01

BeAGLE v1.03.02

produced particle	rate
only neutron	7.66%
only proton	0%
only photon	3.25%
neutron and proton	3.19~%
neutron and photon	44.24~%
proton and photon	2.27~%
neutron, proton and photon	39.39~%

Phys. Rev. D 104, 114030

TABLE II. Summary of particles produced in incoherent J/ψ production in BeAGLE.

Nuclear Breakups at Final State	Number of Events
Only Neutrons	7.86 %
Only Protons	0.0001 %
Only Photons	3.45 %
Neutrons + Protons	3.18 %
Neutrons + Photons	45.41 %
Protons + Photons	1.85 %
Neutrons + Protons + Photons	38.25 %

About 95 % of events have neutrons

Remaining (Non-Vetoed) Events

Phys. Rev. D 104, 114030

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Survived Event Ratio				
Material	Without beam pipe	Beryllium	Aluminum	Stainless Steel
Total events	100 %	100 %	100%	100%
Veto.1	86.9%	86.9%	86.9%	86.9~%
Veto.2	5.81%	9.73%	9.85%	17.2%
Veto.3	5.81%	9.73~%	9.85%	17.2%
Veto.4	5.09%	8.77%	8.89%	15.73%
Veto.5	4.32%	6.22%	5.97%	10.18%
Veto.6	2.29%	3.32%	3.18%	5.68%
Veto.7 ($E_{\rm photon} > 50 {\rm ~MeV}$)	1.06%	2.05%	2.46%	5.58%
Veto.7 ($E_{\rm photon} > 100 {\rm ~MeV}$)	-	2.18%	-	-

TABLE III. Summary of the percentage of events surviving the different vetoing steps for incoherent events assuming no beam pipe and different beam pipe materials of beryllium, aluminum, and stainless steel.

Vote Selections	Surviving Events		
	eAu β @ IR-8 RPSF		
All events	997,820		
Events with one scattered electron identified and $ \eta_{J/\psi} < 4$ and $1 < Q^2 < 10$	732,455 (100 %)		
ZDC HCAL tagged	41,848 (5.71339 %)		
+ RPSF tagged	71 (0.00969343 %)		
+ OMD tagged	71 (0.00969343 %)		
+ B0 tracker tagged	30 (0.00409581 %)		
+ B0 ecal tagged	17 (0.00232096 %)		
+ ZDC ECAL tagged	4 (0.000546109 %)		

Hit Positions of Protons w/ & w/o Magnets

JIHEE KIM