Diffraction and Low-x 2024 Workshop

Diffractive Physics Program at Electron-Ion Collider (EIC) 2nd Detector

Jihee Kim (jkim11@bnl.gov)

2024/09/13

Palermo, Sicily, Italy

Diffractive Physics Program at EIC

Talk by Alex Jentsch "Experimental prospects from exclusive/diffractive physics at ePIC (163)"

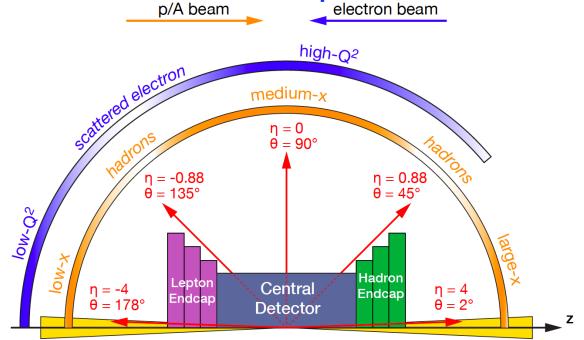
- \circ e+p Deeply Virtual Compton Scattering (DVCS)
 - → GPD spin, total angular momentum

Not the full list...

- \circ e + p Exclusive Vector Meson Production (DVMP)
 - → Quark/gluon flavor GPD
- \circ e+d with p/n spectator tagging
 - → Free neutron structure functions and nuclear modifications
- \circ $e + {}^{3}H/{}^{3}He$ light nuclei with spectator tagging
 - → Neutron structure
- \circ e+p Sullivan process
 - → Meson form factor and structure functions
- \circ e+A Coherent/incoherent Vector Meson J/ ψ production
 - → Saturation

Same physics program at 1st Detector (ePIC) and 2nd Detector

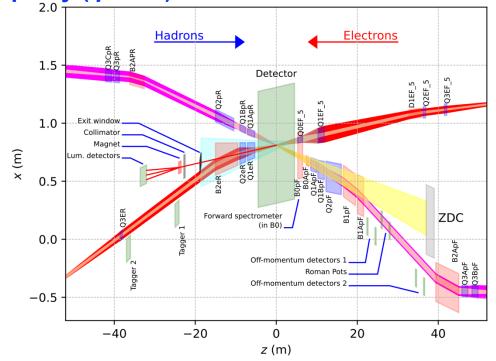
Detector Requirements at EIC


Talk by Alex Jentsch "Experimental prospects from exclusive/diffractive physics at ePIC (163)"

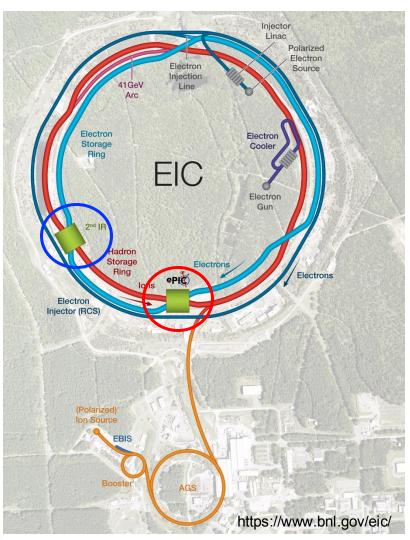
Central Detector

Requires large rapidity (-4 < η < 4) coverage:

Tracking, particle identification, electromagnetic and hadronic calorimetry

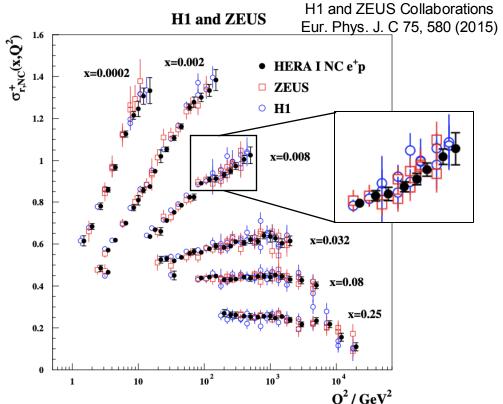

Aim to detect all final-state particles

Interaction Region


Requires **specialized detectors** integrated in the interaction region over 100 m

Aim to detect/tag particles at very forward rapidity ($\eta > 4.5$)

EIC 2nd Detector Motivation



- EIC Design
 - Two interaction points (IP-6 and IP-8) with two interaction regions (IR-6 and IR-8)
- First Detector, called ePIC, located at IP-6
- Second detector at IP-8
 - A general-purpose collider detector to support full EIC program (complementarity)
 - Cross-checks & control of systematics
 - Different subdetector technologies/acceptances
 - Different magnetic fields
 - Broaden physics program (different physics focuses)

EIC 2nd Detector Motivation

Complimentary Technologies of two H1 and ZEUS

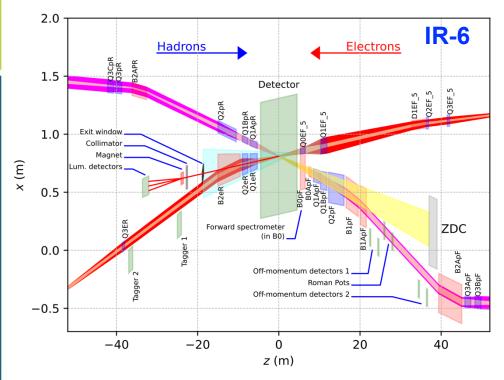
Combining data gave well beyond the $1/\sqrt{2}$ statistical improvement by reducing uncertainties associated with a single detector configuration

Generic EIC-related Detector R&D Program

Annual proposal opportunity

Aim at 2nd Detector

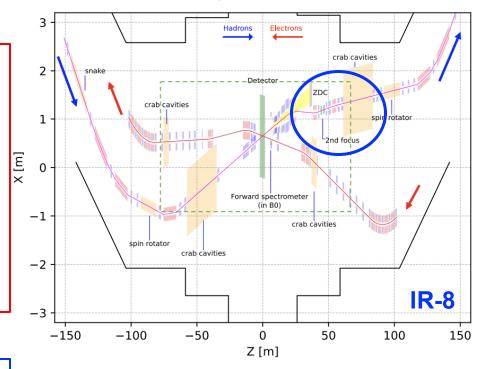
(or upgrades of 1st Detector)


Now used in ePIC and available for 2nd Detector

What other aspect can EIC 2nd detector enhance?

EIC Interaction Regions

Requires specialized detectors integrated in the interaction region over 100 m



Same

Accelerator highlights and challenges

Shared luminosity between both IRs

Center-of-mass energy coverage

Crossing angle: 25 mrad

IR-Design:

 $0.2 \text{ GeV} < p_T < 1.3 \text{ GeV}$

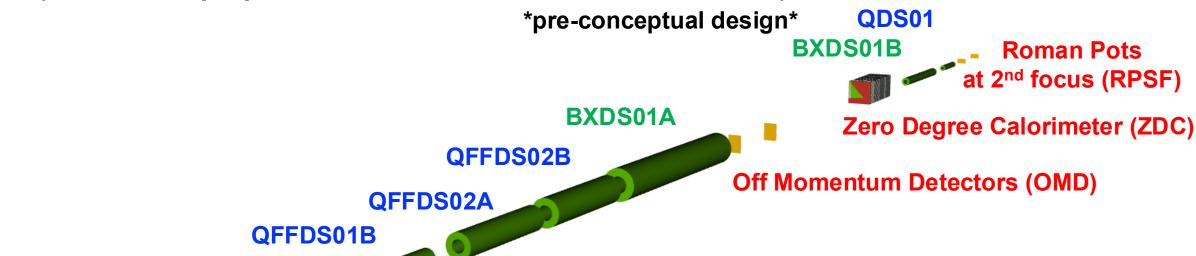
Different

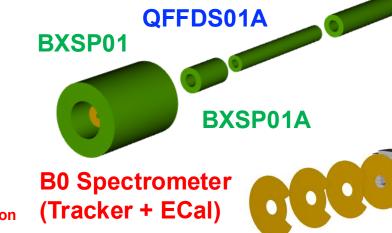
Blind spots

Far-forward detector acceptances

Crossing angle: 35 mrad

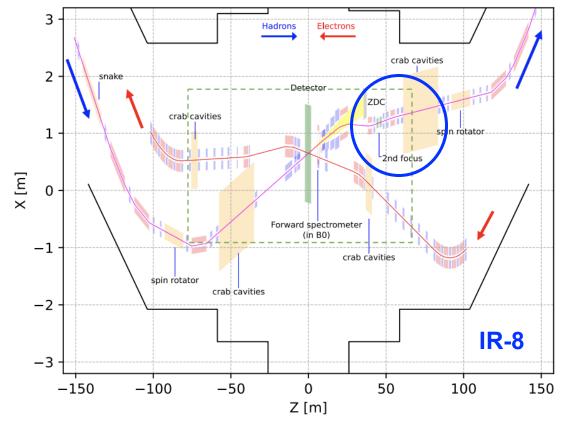
IR pre-conceptual Design:


2nd "beam optics" focus


comes with challenges (ex. magnet design) in accelerator machine

Far-Forward Detector – Layout

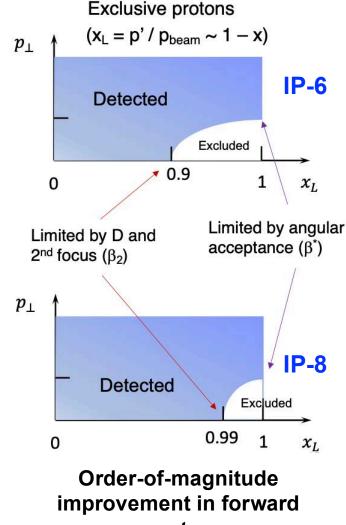
Implemented in **proposed IR-8 Forward Hadron Lattice** and required far-forward detectors



point

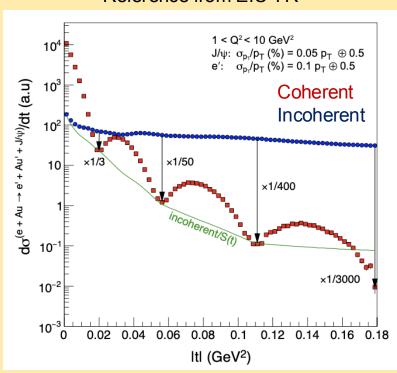
Subdetector	Angle	Detection
B0 spectrometer	$5 < \theta < 20 \text{ mrad}$	Photons + charged particles
Off momentum detector	$0 < \theta < 5 \text{ mrad}$	Charged particles
Zero degree calorimeter	$0 < \theta < 5.5 \text{ mrad}$	Neutrons + photons
Roman Pot	$0 < \theta < 5 \text{ mrad}$	Charged particles + Nuclear fragments

IR Concept – 2nd Focus in Far-Forward


- By adding additional magnets to focus beam ~ 45 m downstream from interaction point under challenges the chromaticity budget
- This is NOT the detector design, but it is the machine design that the detector can be benefit from
- 2nd focus enables
 - Higher probability to detect low p_T (< 250 MeV) particles
 - Detects near-beam particles that get out of the beam envelop
- Complementary to ePIC: exclusive, tagging, and diffractive physics analysis

Physics Opportunities with 2nd Focus

- 2nd focus at IR8 greatly improves forward acceptance
- Complementarity with Detector 1 (ePIC) @ IR-6
- **Excellent low-p**_T acceptance for protons and light nuclei from exclusive reactions at very low t
- **Detection of target fragments** makes it possible
 - To veto breakup to study coherent process
 - To study final state when breakup occurs
- Coherent diffraction on heavy nuclei by vetoing breakups
- Adding **PID** idea? Rare isotopes detection and identification of heavy fragments



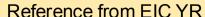
acceptance

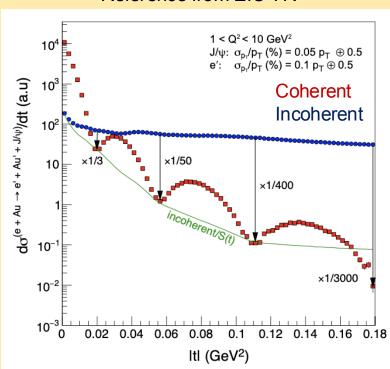
Case: Incoherent Vetoing (Exclusivity)

Reference from EIC YR

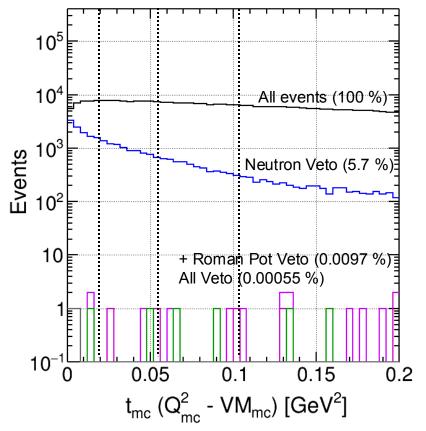
At position of third diffractive minimum, rejection factor for incoherent events better than 400:1 must be achievable (0.0025 % inefficiency)

Diffractive Vector Meson Production: $e + Pb \rightarrow e' + J/\psi + X/Y$


Experimentally diffractive cross section contains sum of coherent (nucleus stays intact) and incoherent (nucleus breaks up) processes


For e + A program, suppression of incoherent background up to necessary third minimum in t should be achieved

Distinguish coherent from incoherent diffractive events by tag nucleus breaks up into fragments using farforward detectors


Case: Incoherent Vetoing (Exclusivity)

At position of third diffractive minimum, rejection factor for incoherent events better than 400:1 must be achievable (0.0025 % inefficiency)

of non-vetoed incoherent events

ZDC hcal tagged (neutrons)

RPSF tagged

(protons, nuclear fragments)

OMD tagged (charged particles)

B0 tracker tagged

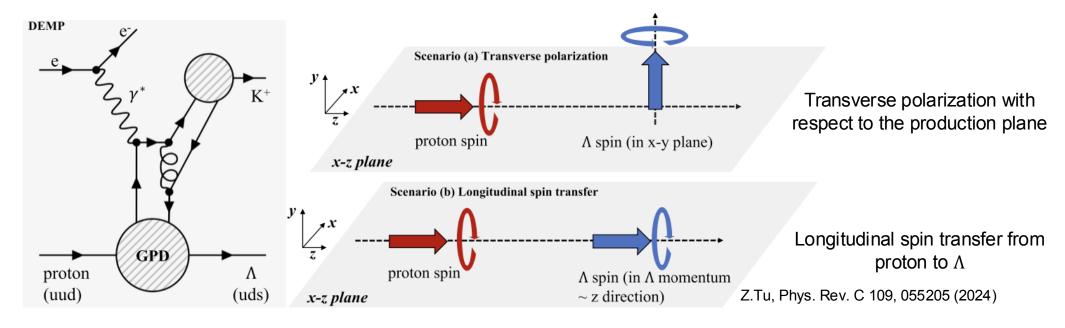
(charged particles)

B0 ecal tagged

ZDC ecal tagged (photons)

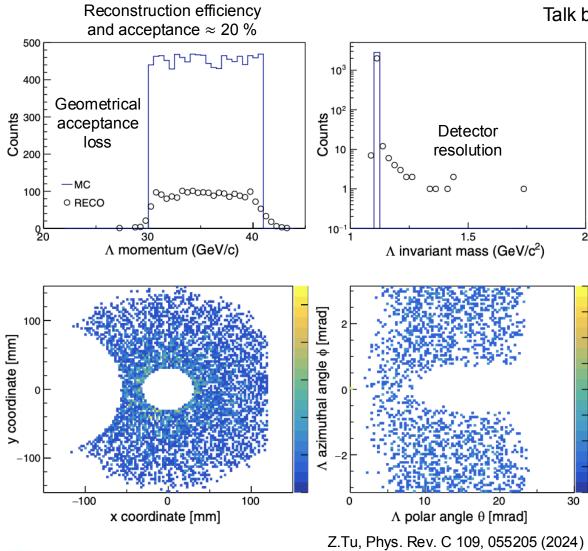
Fragment detection
using Roman Pot
at 2nd Focus at IR-8
provides
a stronger veto at any t
(complementarity + unique

capability)


Found to be enough to suppress incoherent contribution at three minima Vetoing efficiency is >> 99.99%

Case: Lambda Spin Measurement

Talk by Zhoudunming Tu "How does Lambda hyperon obtain polarization? (95)"

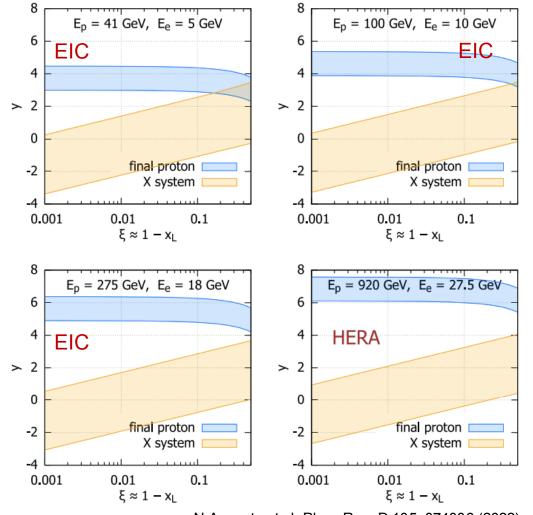

Λ hyperon polarization in DEMP with longitudinally-polarized protons

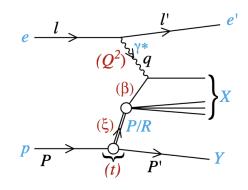
New Λ polarization measurement via deep exclusive meson production (DEMP): $e + p \rightarrow e' + K^+ + \Lambda$ e', K^+ can be measured within acceptance of central detector Λ (close to beam direction) decay particles can be measured using far-forward detectors

Case: Lambda Spin Measurement

Talk by Zhoudunming Tu "How does Lambda hyperon obtain polarization? (95)"

Shown stand-alone GEANT simulation of B0 spectrometer for Λ reconstruction (30 < p_{Λ} < 41 GeV/c)


Low energy configuration e.g. $5 \times 41 \text{ GeV}^2$ **feasible** (vertices of Λ decay **before B0**)


Higher energy Λ decay occurs **beyond B0**

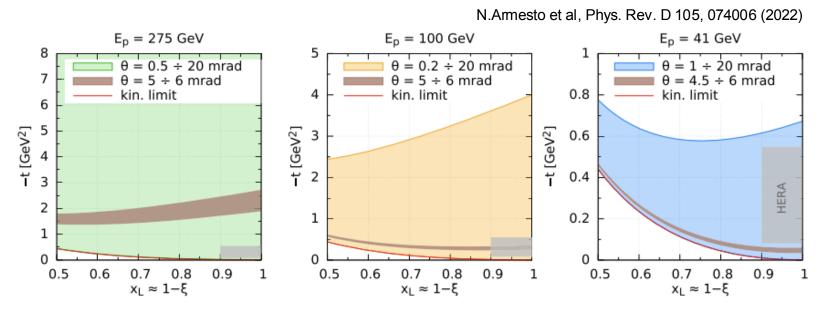
EIC 2nd **Detector can be optimized baseline layout** of far-forward detectors' location/smaller proton beam pipe diameter to explore capability to detect high energy Λ and have larger acceptance (complementarity + unique capability)

Case: Diffractive Longitudinal Structure Function

Rapidity range of **scattered proton** and undecayed system *X* for different beam energy configuration

HERA: LRG method for gaps > 3 units of rapidity

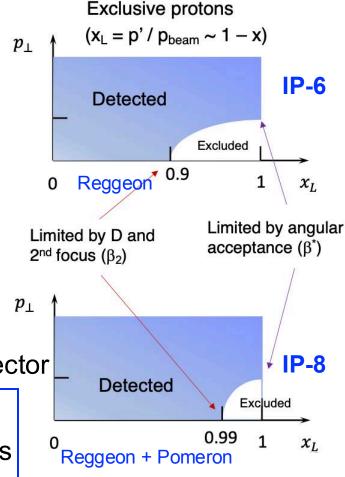
EIC: large gaps at smallest ξ and largest s


However, most of regions LRG method can be challenging at EIC

N.Amesto et al, Phys. Rev. D 105, 074006 (2022)

*LRG: Large Rapidity Gap

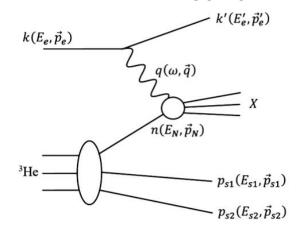
Case: Diffractive Longitudinal Structure Function



Proton tagging using Roman Pots, then much better than at HERA

At **EIC**, select diffractive events using proton tagging thanks to FF detector

EIC 2nd detector can provide possibility for containing F_L^D ;


Reggeon and Pomeron exchanges at the same machine and may opens new opportunity to study separate from one contribution to another (complementarity + unique capability)

Case: Light Nuclei Spectator Tagging

Double spectator tagging method

For ³He nuclei as **effective neutron target**, **tag spectator protons in far-forward**

From different models of three breakup of ${}^{3}He$, two spectator protons land

within acceptance of different far-forward detectors (B0/OMD/RP)

EIC 2nd Detector can be optimized baseline layout to explore improvement on this measurement and impact with inclusion of 2nd focus (larger acceptance) at IR-8 (complementarity + unique capability)

Summary and Outlook

- Having two general-purpose collider detectors at EIC to support full EIC science program allows us to have cross-checks for potential key results and to combine data which gives improvement in systematics (ex. H1 and ZEUS)
- EIC 2nd detector and interaction region could provide complementarity and unique capabilities
- Continue exploring detector technologies and establish advantages in IR-8 and facility upgrade toward physics program benefits
- Welcome to bring new input, approach, perspective, participation

EIC 2nd detector working group

- o Group page: https://eicug.github.io/content/wg.html#detector-iiip8-group
- Conveners are: Charles Hyde (ODU), Sanbaek Lee (ANL), Simonetta Liuti (UVA), Pawel Nadel-Turonski (USC),
 Bjorn Schenke (BNL), Ernst Sichtermann (LBNL), Thomas Ullrich (BNL/Yale), Anselm Vossen (Duke/JLab)
- Software coordinators: Wenliang Li (MSU) and Zhoudunming Tu (BNL)
- Convener mailing list: <u>eic-det2-conveners-l@lists.bnl.gov</u>

Backup Slides

