e-³He Scattering Study

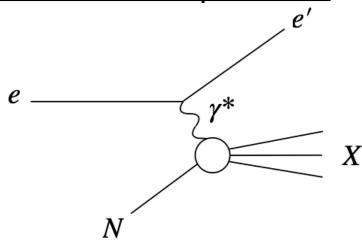
Jihee Kim (jkim11@bnl.gov)

2024/08/19

Physics Motivation – Neutron Structure

- Nucleon structure measurements for understanding QCD
 - Origin of nucleon spin (using polarized ³He beam)
 - Use light nuclei to probe neutron $({}^{2}H/{}^{3}He$ as effective neutron target)
- o Experimental method: double tagging sample e^3He (e, e', p_{1S} , p_{2s})
 - o **Measure scattered electron** in central for x, Q^2
 - Measure two spectator protons in far-forward (B0 tracker, Off-momentum, and Roman Pots)
- Impact
 - Provides valuable input for polarized parton distribution global fit and flavor separation
 - Tests nuclear correction by comparing to existing fixed target data

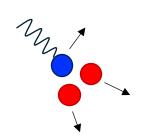
Fig. 2. A diagram of Deep Inelastic $e+^3$ He scattering with double spectator tagging. The channel shown here is electron scattering off a neutron in 3 He; the two spectator nucleons are the protons in the process 3 He $(e, e'p_{s1}p_{s2})X$.

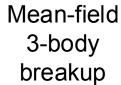

Physics Letters B 823 (2021) 136726

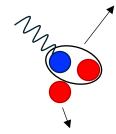
Event Generator – DIS Event Sample

CLASDIS generator

- Fixed target frame
- Polarized and unpolarized targets
- DIS events from free proton/neutron
- No Fermi motion of nucleons and No kinematics of spectators



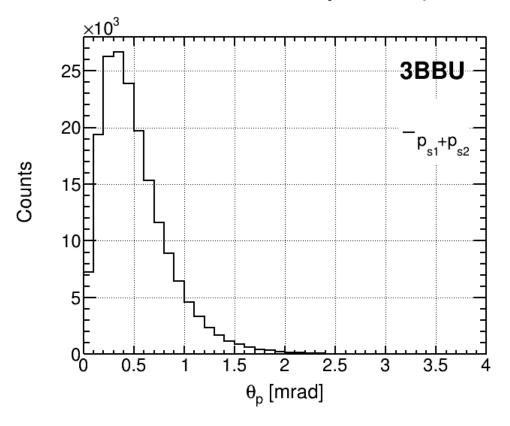



Separate procedure

- Add Fermi motion
- Add kinematics of spectators

Breakup models of ³*He*

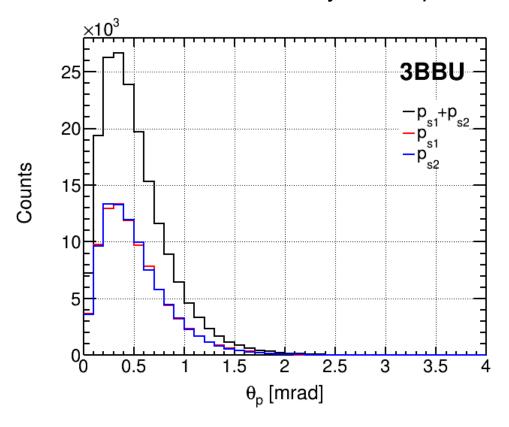
Short-range correlation breakup

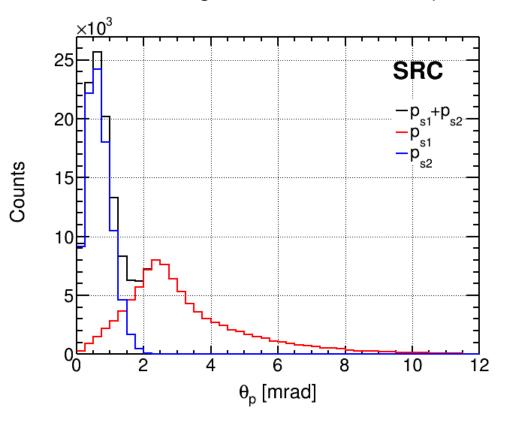

Event Generator – DIS Event Sample

- Obtained two samples (3BBU-MF and SRC) from Alex Jentsch
 - \circ e^3He 18×110 GeV² unpolarized SIDIS samples in PYTHIA format
 - Converted to HepMC format for DD4hep simulation via eic-smear
 - Some issue occurs when parsing events too few vertices (vertices info missing)
 - 200k events per sample, but 45.5 % of events having two spectator protons

Kinematics of Two Spectator Protons

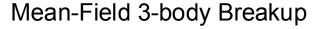
Mean-Field 3-body Breakup

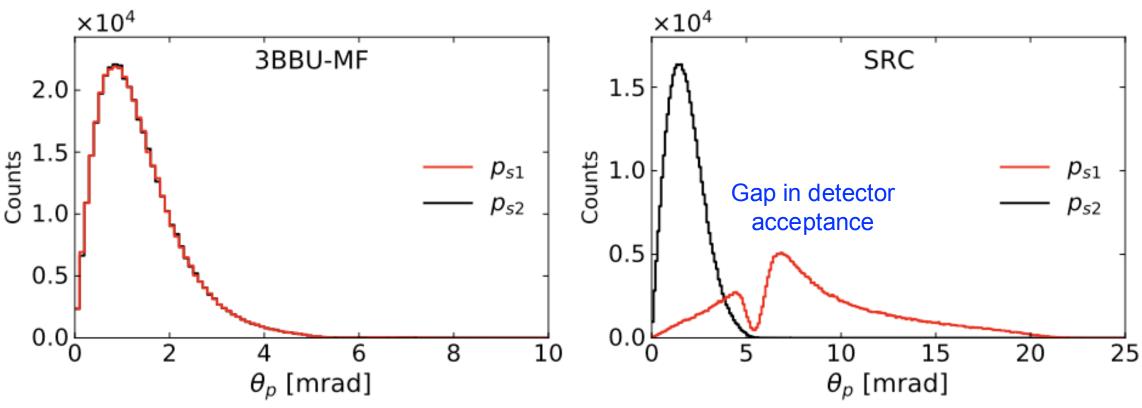

Short-range Correlation Breakup



Kinematics of Two Spectator Protons

Mean-Field 3-body Breakup


Short-range Correlation Breakup



Angular Distribution of Tagged Protons

Physics Letters B 823 (2021) 136726

Short-range Correlation Breakup

Comparing to previous figure, beam effects are included (beam crossing angle + angular divergence/momentum spread)?

And this is tagged spectator protons by far-forward detectors (detector acceptance included)

Next Steps

- \circ Understand e^3He event generator(s) better
 - CLASDIS and DJANGOH
 - Follow up with CLASDIS on additional procedure with Fermi motion and kinematics of spectators
- Pass through Afterburner to run IR-8 DD4hep simulation
 - Check tagged distributions
 - Look at hit information from OMD/Roman Pot and total momentum reconstruction (|\vec{p}_{1s} + \vec{p}_{2s}|)
- Given current pre-conceptual IR-8 design, explore capability to tag two spectators and it may provide opportunity on baseline optimization with far-forward detectors (complementarity)

Backup Slides

