

Discovery through Complementarity – The EIC 2nd Detector

Cheuk-Ping Wong [cwong1@bnl.gov]

APS DNP meeting, 10-08-2024

The Needs of a Second Detector

• Cross-checking \rightarrow validate discoveries

The Needs of a Second Detector

- Cross-checking \rightarrow validate discoveries
- Cross Calibration \rightarrow gives beyond the simple $\sqrt{2}$ statistical improvement

The Needs of a Second Detector

- Cross-checking \rightarrow validate discoveries
- Cross Calibration \rightarrow gives beyond the simple $\sqrt{2}$ statistical improvement
- Different physics focuses
- Technology Redundancy \rightarrow mitigate risks

Concepts of the 2nd Detector (Central) – Muon ID

BELLE II KLM (green)

KLM-type muon ID in the central and forward regions

https://arxiv.org/pdf/1011.0352.pdf

BELLE2-CONF-PH-2022-003

https://docs.belle2.org/record/2895/files/Lepton_ identification Moriond 2022 v2.pdf

Concepts of the 2nd Detector (Central) – Muon ID

BELLE II KLM (green)

Brookhaven National Laboratory KLM-type muon ID in the central and forward regions

Reduce ambiguity in quarkonium reconstruction

Concepts of the 2nd Detector (Central) – Muon ID

BELLE II KLM (green)

identification_Moriond_2022_v2.pdf

KLM-type muon ID in the central and forward regions

- Reduce ambiguity in quarkonium reconstruction
- Threshold muon momentum cut reduces reconstructed J/ψ at p > 4 GeV
- Statistics are reduced by 15-20% after muon ID efficiency implementation
- Challenge: space limitation

Concepts of the 2nd Detector (Central) – Magnet

Hcal/muID not shown

384 cm		
	ePIC	2 nd Detector
1215 m	B=1.7 T	B=2T improve momentum resolution
	r=1.42 m	r=1.6 m Lager inner volume
ATHENA solenoid		

Concepts of the 2nd Detector (Central) – Ecal

Hcal/muID not shown

<u>í</u>					· ··			
Imaging Ecal								
				<u>1,215 m</u>				
PbWO ₄								
Ecal				1,215 r. <mark>a</mark>			<u></u>	
					· ··			

Using the ePIC Ecal designs, currently

- Backward
 - Lead-tungsten crystals Ecal
 - Fine energy resolution (1-2%)
 - High pion suppression
- Central
 - 6 layers of imaging silicon sensors interleaved with 5 scintillating fiber/lead layer
 - A large section of scintillating fiber/lead layer at the outer radius
- Forward
 - Scintillating fiber/lead
 - Good pion/photon separation

Concepts of the 2nd Detector (Central) – PID

Hcal/muID not shown

- Transition radiation detector in the backward region
 - Challenge: material budget
- Options for forward PID
 - Additional ToF for low p
 - Additional pfRICH
 - Different gas radiator
 - Challenge: space limitation

Concepts of the 2nd Detector (Central) – Tracking

Hcal/muID not shown

Vertex layers & silicon disks

- Mixed-tracking technologies
 - Inner silicon tracker for vertexing
 - Large volume of non-silicon detector for tracking
- More hits for better pattern recognition, redundancy, and resistance against backgrounds
- Could provide PID at low momentum using dE/dx
- Examples:
 - 1. Gas detector (TPC or drift chamber)
 - 2. Scintillating fiber

at secondary focus

Roman Pots

- Different beam crossing angle \rightarrow different blind spots
- Second beam focusing feature \rightarrow better measurements of low p_T particles and fragment Calorimeter (ZDC) Zero Degree
- Challenge: chromaticity budget

Summary

- A second detector is **essential** for the EIC experiments
 - Cross checking
 - Cross Calibration
- A second detector should provide **complementarity** to ePIC
 - Stronger magnet
 - Muon ID
 - Mixed-technology tracking system
 - Different IR design
 - Options of Ecal and PID?

Back Up

Scintillating Fiber (LHCb)

Double-clad polystyrene fiber

- D=250 um \rightarrow hit pos. res. < 70 um
- 8k photons per MeV of ionization energy
- Excited electron decay times=2.4 ns
- Attenuation length~3.5 m

Hamamatsu SiPM (MPPC S13552 - H2017)

- Pixel size ~ 60 um
- <10% noise cluster rate with front-end clustering and -50 °C cooling using Novec

Material budget=1.1% x 12 layers

Technology advancement

- Scintillating fiber with improved radiation hardness
- Modify claddings to boost light yield
- Cryogenic cooled SiPMs with microlenses for light recovery

Drift Chamber (IDEA/MEG II)

Reduction of material

by storing helium gas in the wire support endplates IDEA: $0.016X_0$ ($0.05X_0$) in the barrel (forward and backward) region

More uniform equipotential surface

A high ratio of the field to sense wires and a high wire density by enmeshes the positive and negative stereo angle orientations IDEA: 4 m long, r = 35-200 cm, 400k wires, res ~ 100 um

<u>PID capability</u> with the cluster counting method Adding timing information to the wires to count individual ionizing events of the traversing track and dE/dx information

Technology advancements

- Carbon-fiber wire vs tungsten wire reduce X/X₀ by a factor of 5
- Low mass service/cooling structures
- See Andy's slides from last week

drift tube

ionization clusters

TPC/mini TPC

GridPIX aka miniTPC

- Basic idea: Small ΔR TPC with Si Pixel readout on one endcap
 - ▶ PID (*π* − *K* − *p*) from 100 MeV/c to 800 MeV/c
 - Tracking with large number of hits (pattern recognition)
 - Works only in barrel (field!)
- GridPIX
 - Avalanche grid in front of 55 x 55 µm₂ pixels.
 - >90% efficiency for single electrons.
 - Small area is not particularly expensive: 1800 chips (order/produce/test 3600) = \$716k
 - Careful: 1.2-5.4 kW of power
 - Services bulky: Gas, power, cooling
 - Realistic X/X₀?

https://indico.bnl.gov/event/18414/contributions/76157/attach ments/47563/80668/EIC_Technology_Inventory_Temple.pdf

Reality check:

- Very compelling for D2
- Provided tracking an dE/dx (compare with ToF/AC-LGAD)
- Excellent Pattern recognition
- Less sensitive to backgrounds
- Generic R&D ongoing
- Need to see concrete prototype

