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What is Wire-Cell?

d Wire-Cell is a collection of software tools =
for LArTPC experiments
= TPC signal simulation 7
= TPC signal processing | Wendiang's talk today o

o Noise filtering

o Signal deconvolution
= Event reconstruction

o 3D imaging

o Clustering

o Charge-light matching Haiwang'’s talk on Friday

o Reconstruction of track trajectory, dQ/dx, vertex, _ o N
PID, energy, particle flow, ... R [ T~

= \isualization S w |
1 Physics analysis with Wire-Cell products B o

Wire-Cell-Toolkit: a Data Flow Programming Framework Brett's talk




prototyping started in 2015 > i B

Wire-Cell

TPC simulation 3D imaging multi-track fitting Model validation
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signal processing
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Visualization

4 Since a LArTPC is intrinsically an imaging detector, having
powerful event-display tools is crucial for both advanced
developers and general users

* We need to think hard about how to best present the data

d In Wire-Cell, we have a multi-purpose web-based 3D event
display called “Bee”:
» cross-platform (runs in a web browser)
» basic server tools to support event catalog, user uploads, etc.
= interactive 3D display based on WebGL

* on-demand display of multiple information: multiple reco overlay, truth,
charge-light matching, etc.

Demo: Example nue events from MicroBooNE



https://www.phy.bnl.gov/twister/bee/set/uboone/lee/2021/wire-cell-gallery/event/list/

LArTPC vs Collider Gas TPC

MicroBooNE, electron neutrino

O Neutrino interaction: anywhere in the detector

O Secondary interactions are common due to high
density

O Very few auxiliary detectors
* photon detectors, cosmic ray taggers

O No magnetic field

O Both track (u, p, ) and showers (ely)
reconstructions are important

O Main challenge: correctly reconstruct and
associate different activities (tracks, showers,
light, etc.)

OO0

STAR — RHIC — BNL, Au + Au
.

Interaction: mostly at the colliding vertex
Few secondary interactions in the gas

Many auxiliary detectors

» vertex detector, muon detector, TOF,
EM/hadron calorimeter, etc.

Magnetic field to help determine particle
momentum and predict particle trajectory

Shower reconstruction typically only
through separate calorimeter

Main challenge: high multiplicity of tracks.




Noise filtering and Signal Processing
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Example event from MicroBooNE
before and after signal processing
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Tomographic 3D Imaging

+ geometry information

| i
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Dealing with imperfect detector

R e a I i Sti C i S S u e S : (a) Active detector requiring three functional wire planes
d MicroBooNE has ~10% dead -
channels ‘
u Req u i re a I I 3 p I a N eS 3 O % d e a d reg i O N (b) Active di:m;tor requiring two or three functional wire planes

» Require 2 planes: — 3% dead region

d Two-plane tiling creates more
ambiguities (ghost hits) depending on
the topology of the event; need
dedicated de-ghosting algorithm Ve
= Check position overlap with = X IR e

dead channels TACRRNTERG
* Check redundancy in projective views

= [terative charge-solving + de-ghosting & h t/
e-ghosting

MicroBooNE Data —




Clustering

d Cluster 3D points into individual
objects based on proximity

» k-d tree, an efficient space-
partitioning data structure for
organizing spatial points

] Realistic issues:

» gaps caused mainly by dead
channels — under-cluster

» accidentally overlapping tracks —
over-cluster

» Residual ghosts

Y (vertical)

X(Edrirr) ¥

Z (beam) $ g

MicroBooNE Data

same color: same cluster



https://en.wikipedia.org/wiki/K-d_tree

Charge-light matching

d Matching between 20-30 TPC et
clusters and 40-50 PMT flashes | | \ N 5 |
= correcting x-position of each cluster o P B /\/ )
» Important for neutrino selection and e 2 Tl & o g 2
cosmic-ray rejection T N‘ ‘! “ ] M
d Method: form a cluster-flash ‘ ‘" L

pair, compare predicted light
pattern based on charge cluster

vs measured light pattern

 All possible hypotheses | e e I
= 1 cluster — 1 or 0 flash (inefficiency - o R T
in the light system) e °*® N0
= 1 flash — 0, 1, or many TPC |
clusters (inactive volume, under- . . oo oo
clustering) o . e o o .
» Solved efficiently with Compressed o .. oo oo

Sensing (L1-regularization)




MicroBooNE

Track Trajectory Fitting .4

MicroBooNE

0 Goal: determine an ordered fine- A
grained trajectory from the un-ordered &F \- | [or

3D points in the cluster - . o .
Green: original 3D points from imaging/clustering
1 Approach: Red: trajectory seed found with Steiner Tree

1. Find initial 3D trajectory seed with a
coarse spacing (1.2 cm)

o Steiner tree (Graph theory): find shortest path
through point of interests

projection matrix

2. Associate the 3D seed with the 2D | T N
measurement T= )Y (My—Rg-S)
3. Form a test statistic T to fit the trajectory k=upw |
o Minimization: biconjugate gradient stabilized 2D measured points

method (BICGSTAB)
4. lterate again with a finer spacing (0.6 cm)

3D trajectory to be fitted




stopped muon
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MicroBooNE data

Neutrino Vertex Fitting ‘

| ne e
¢— W UJ) gamma 365 MeV

v | +—# U gamma 23 MeV
i [] 4] neutron 1 MeV

O Traditional fitter ¥ R
= Direction from dQ/dx / | '-g '
» Position, multiplicity, connection rules, etc. "y ; a /
neutrimo 10 cm

Q Deep Neutral Network fitter oo | e N
= Sparse Regression U-Net

» Predict: distance map of each voxel (a 3D

pixel) to the neutrino vertex Truth label: c(,,,fm,mzexp(_“f‘“wm”" |
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PID, Energy, and Particle Flow

 Particle ID

= track PID based on dQ/dx (d) 3D dQ/dx (e) Particle flow
= e/gamma separation based on displayed with starting from
PID capability neutrino vertex
gap and dQ/dx

= 110 reconstruction (a pair of y’s)
1 Energy reconstruction

W L) mu- 160 MeV

S -

- W i proton 10 MeV
= Track: range, dQ/dx - _ ‘[' @ 3 proton 133 MeV
» Shower: dQ/dx L .1 e
. NeutrInO € -~ ” ! 4J gamma 1 MeV
. . . : -[L] UJ gamma 0 MeV
d Starting from neutrino vertex, ) - )1 ) gamma 3 e

build the entire particle flow
I hierarchy




Wire-Cell enabled multiple nBooNE _
physics analyses in MicroBooNE

 Neutrino Selection
» Generic neutrino selection: Cosmic-ray removal
* Inclusive numuCC selection

= |nclusive nueCC selection
= Exclusive final states

1 Oscillation analyses: Low Energy Excess, single photon, 3+1
fit with BNB + NuMI

d Cross section measurements




Generic Neutrino Selection

After charge-light match
+ through-going muon removal
+ stopped muon removal

1 99.98% in-beam-coincident cosmic-ray
backgrounds are rejected

4 v, charged-current (CC) efficiency: 80%

A v,CC efficiency: 90%

dHowever, v, is only ~0.5% of all
neutrino interactions
= need another factor of ~1000
Improvement in purity to be
sensitive to LEE
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https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevApplied.15.064071&v=c1754ed8

Improved Selection through BDT WBoONE _

Wire-Cell generic neutrino selection ( e

+ interaction-level variables

Reject residual cosmic and out-of-FV

events

L.

Shower exists and energy threshold vector variable set #1 round 1 BDT score round 2 BDT score

} particle-level variables

Wire-Cell 3D pattern recognition l vector variable set #15 round 1 BDT score round 2 BDT score

XGBOOST, 99.9%, 30-fold reduction

1.00 '
% o TMVA, 99.55%
Human feature engineering c /-fold reductibn
@) :
= 0.98 :
+ 8 Box-cut result, 97%
Machine learning algorithm: | @ ¢ A
_ . . ) |
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Performance of CC Selection

PRD 105, 112005 (2022)
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PRL 128, 241801 (2022)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.112005
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.241801

Wire-Cell: Moving Forward

1 Porting from prototype code to Wire-Cell Toolkit

» Signal simulation, signal process, and 3D imaging have been ported to
WCT and are available for SBN, protoDUNE, and DUNE-FDs.

» Other tools only exist in MicroBooNE. Significant collaborative efforts are
needed to make them available for other experiments: we need your
support!

 Improve 10 and Integration with LArSoft / other tools

d Improve event reconstruction performance

» Mathematical / Physics—based algorithms
= AI/ML algorithms

d Grow user base
» documentations, tutorials, workshops, ...







