Sparse Convolution Transformers for DUNE FD Event and Particle Classification

Alejandro Yankelevich and Alexander Shmakov For the DUNE Collaboration

Wire-Cell Reconstruction Summit Pattern recognition, AI/ML April 12, 2024

DUNE

- 1300 km baseline neutrino oscillation experiment.
- 17 kt horizontal drift far detector module uses wire plane anodes with three readout planes.

UCI DUNE

Reconstruction Techniques

- "Pandora" is a collection of reconstruction algorithms including vertexing, track and shower clustering.
- "CVN" network predicts event class and number of secondary particles (protons, pions) in event.

Motivation

- Want a network that simultaneously uses information from both the overall event LArTPC images and images containing single prongs (reconstructed particle tracks or showers) to identify each prong.
 - Prongs can sometimes only be differentiated by their relationships to other prongs.
 - Provides more insightful interpretability than networks trained on single images.
- Permutation-invariant transformer architecture an ideal candidate for training on variable-length collection of object such as prongs.

TransformerCVN Network Architecture

Embedding LArTPC Images

- DUNE LArTPC pixel map images are large, high resolution, and sparse.
- Use attention-based ResNet inspired by Stable Diffusion XL used in AI Art.
 - Combines Convolution and Attention layers to improve the regular ResNet.
 - Extracts pixel features and allows for long-distance information to be shared via attention.
 - Effective for utilizing all information in sparse pixel maps.
 - Smaller latent size for more efficient memory usage.

Training Details

- Train on three 400 x 280 U,V,Z wire plane pixel maps for entire event and each reconstructed prong.
 - Prong pixel maps only contain hits assigned to prong by Pandora track and shower reconstruction.
 - Network size adapts to number of prongs in event, currently capped at 20.
- Predict event as (v_{μ} CC, v_{e} CC, NC, other).
 - CC: charged current, NC: neutral current
- Predict prongs as (e, μ , p, γ_n , π^{\pm} , γ_{π^0} , γ_{other} , other).
 - Subscripts denotes mother particle, but can combine all photons.

Event ROC Curves

T-CVN - TransformerCVN E-CVN - EventCVN

UCI DUNE

Event Confusion Matrices

Prediction Normalized

Truth Normalized

DUNE Simulation 93.80 1.594.60 v_e 1.49 95.10 3.39 v_{μ} 6.01 4.71 89.27 Neutral v_{μ} Neutral v_e Predicted Label

Prong Confusion Matrices

Prediction Normalized

Truth Normalized

DUNE Simulation 82.19 0.62 2.24 1.5513.40 e 1.0886.27 2.13 6.80 3.72 μ **Truth Label** 1.58 0.65 83.90 8.43 5.44 p 3.54 2.68 16.60 π^{\pm} 64.84 12.34 7.47 0.80 3.51 2.28 85.95 v π^{\pm} е μ р γ Predicted Label

UCI

Interpretability

- Examine the internal activations and gradients within the network to determine which aspects of the input pixel maps cause one prediction over another.
- Pixel Gradients (Salience)
 - The gradient classification probability with respect to hits in a given location.
 - When aggregated, provides a template of a typical event for each prong type.
 - Red means more likely to predict the given prong type with more energy in that location.
 - Blue means less likely to predict if there is more activity (anti-correlation).
- Attention Scores
 - Indicate the importance of different elements to the events.
 - Allows us to find out which prongs are used for different types of events and prongs.

Note: These interpretability studies have not been conducted yet for DUNE simulation. The following slides show studies with a network trained on NOvA 2 x 100 x 80 pixel map images.

Individual Saliency

- Can calculate importance of different hits for each event.
- Useful for debugging wrong predictions.
 - Challenging to verify any learned physics.
 - When aggregated, provides a template of a typical event for each prong type.
- Need to aggregate multiple prongs of the same type to find patterns.

Example saliency maps for ve event prediction of v_e event (left) and μ prong prediction of v_{μ} CC event (right).

Salience Aggregation

- Calculated these values for every prong in ~10,000 events and every possible output of the network.
- Rotated, translated, and averaged each image using the vertex information associated with each prong.
 - Every prong forced to have vertex at (40, 0) and facing toward +z.
 - Possibly limit event by track length to compare similar lengths.
- Plot grid of results.
 - Diagonal displays the gradients for each class.
 - Off-Diagonal elements display difference between the two classes ("Positive Class" - "Negative Class").
 - Truth-Only plots contain only prongs whose truth label matches the Positive Class.

Pixel Map Alignment

UCI DUNE

Integrated Importance Maps

- Comparing 2D maps is challenging, so integrate importance along the width of the detector and plot them all on the same axis w.r.t distance from the vertex.
- Electrons peak early, fall off.
- Muons have a long, flat profile along track.
- Photons feature delayed peak.
- Tail values (>500 cm) tend to go wild due to sparse data in that region.

UCI

Attention Matrix

- Importance of different prong types for classifying the event type.
 - e, µ important for corresponding CC events.
 - p and $\pi 0$ for important for NC.

Summary and Future Work

- "TransfomerCVN" architecture uses contextual learning capability of transformer networks for improved joint event/particle classification.
- Attention-based CNN makes approach feasible for large LArTPC images without large memory impact.
- Will quantify potential benefits to DUNE oscillation analysis.
- Will use increased interpretability potential to conduct studies on relationships between event/particle types and importances of inputs.