

Wire-Cell in MicroBooNE

Hanyu Wei Louisiana State University

The Second Wire-Cell Reconstruction Summit Apr 11, 2024

What is Wire-Cell?

First answer in Google search

A collection of algorithms & software tools for LArTPC

Chao's talk yesterday

Second answer in Google search

A Github repository created several years ago, containing a variety of codebases -- **wire-celltoolkit, etc.** Brett's talk yesterday

A brief history of Wire-Cell development

Wire-Cell is a 3D tomographic event reconstruction for LArTPC. Started from the 3D event image reconstruction, it now covers a wide range of topics from TPC signal processing to 3D pattern recognition

MicroBooNE

Address MiniBooNE low-energy excess origin and search for new physics

New physics beyond the Standard Model (BSM)

Various exclusive and inclusive cross section measurements

- Large v Ar data sample
- Leveraging the excellent PID capability of LArTPC

Pioneering LArTPC detector

- Long-term running cold electronics, highpurity and stable operation
- Cosmic-ray tagger, laser calibration system
- Good understanding of detector response: wire response, space charge effect, etc.
- Multiple novel & auto reconstruction techniques
- Computing challenges
- Post-operation R&D (Rn doping, HV related, etc.)

Wire-Cell group at MicroBooNE

- The team creating and developing Wire-Cell software package
- Essentially the same team + new postdocs/students optimizing & applying Wire-Cell to achieve high-performance physics analyses

6 institutions, 15-20 members, faculty, postdocs, and students

50 years: from Bubble chamber to LArTPC

LArTPC: fully active tracking calorimeter

Gargamelle (1973): discovery of weak neutral current [$\nu_{\mu}e^{-} \rightarrow \nu_{\mu}e^{-}$]

LArTPC: an enabling detector

Capable of identifying different species of particles and reconstructing 3D images with fine-grained information

- Neutrino vertex
- Particle flow (mother-daughter relationship)
- Track (μ , π , p etc.) vs shower (e, γ EM cascade)
- $\circ e vs \gamma (e^+e^- \text{ pair production}) \text{ separation} \\ addressing MiniBooNE anomaly}$
 - Gap between shower start point and neutrino vertex?
 - dE/dx in shower stem (1 MIP vs 2 MIPs)
 - Split of e^+e^- pair (large opening angle)

LArTPC: fully active tracking calorimeter

Event Reconstruction in LArTPC

• In essence, while <u>hardware provides</u> the physical foundation for technology, <u>software enables</u> its functionality and utility.

 Event reconstruction in LArTPC can maximize the scientific capabilities inherent in the LArTPC technology, yielding significant physics outcomes.

> "Hardware eventually fails, software lives forever." - Paul Ginsparg, physicist and creator of the arXiv repository.

Event Reconstruction in MicroBooNE

Different novel reconstruction approaches developed in MicroBooNE

Pandora reconstruction

The most general pattern recognition algorithm with the longest history <u>Eur. Phys. J. C78, 82 (2018)</u> (various cross section results and new physics searches)

Deep-learning reconstruction Built upon the deep learning revolution

HIP

MIP

Shower

µBooNE

 \boldsymbol{v}

in the area of computer vision; first of their kind applications in a LArTPC PRD 103, 052012 (2021) PRD 103, 092003 (2021), PRD 99, 092001 (2019)

Track

G

Showe

Track

 π^{\pm}

MicroBooNE Simulation

 $p e^- \gamma \mu^-$

MPID Score 0.89 0.95 0.85 0.06 0.17

Run 6046

Subrun 72

Y-plane

10 cm

Event 3633

Enu=1060 MeV

MicroBooNE Data

Wire-Cell reconstruction

Tomographic 3D imaging/clustering and other 3D-based pattern recognition

<u>JINST 17 P01037 (2022)</u> <u>PRApplied 15 064071 (2021)</u> <u>JINST 16 P06043 (2021)</u> <u>JINST 13 P05032 (2018)</u>

Wire-Cell Event Reconstruction

Development of Wire-Cell 3D pattern recognition in MicroBooNE

Challenges

- A huge amount of 3D points
- Wire readout ambiguity, particularly for isochronous track
- Broken tracks (prolonged tracks or non-functional channels)

Strategy

- Eye-scan oriented development (traditional approaches in the first iteration)
- Directly on real data
 - ✓ Complex topology first
 - ✓ O(1) event \rightarrow O(10) events
- \checkmark Validation (optimization) by MC

The first version ready in April 2020

Wire-Cell nue CC tagger (developed in April-August 2020)

Basic strategy of "Gen 1" nue CC tagger:

- Traditional algorithms
- \circ Hand-scan \rightarrow human feature engineering
 - Various taggers to reject specific types of background
- $\circ~$ Iterative optimization

nue CC sub-taggers [24 in total]

4/11/24

Numbers are relative to all rejected events

Rejection rate of valid (reco showers) BNB nu overlay events

"Gen 1" cut-based nue CC tagger result

4/11/24

0

Issues of the "Gen 1" strategy and Game change

Issues of "Gen 1" nue CC tagger:

- BNB nue CC vs. other nu = 1:200 (NuMI 1:10)
- Capacity of hand-scan
 - <1000 events
 - 1% error rate \rightarrow 1% x 200 w.r.t. nue CC

Basic strategy of "Gen 2" nue CC tagger:

- Machine learning algorithms
 - Shallow learning e.g. BDT to enhance purity
 - Deep learning to enhance vertexing efficiency
 - High statistic training to cover more "corner cases"

Slow progress & Unstable

Rapid & Robust

Reco products, knowledge and human learned features in previous "Gen 1" development as input is vital to ensuring the performance

NueCC candidate energy spectra

Scientific achievements (not exhaustive list)

Phys. Rev. Lett. 128, 151801 (2022)

 ν_{μ} CC inclusive xsec

First measurement of energydependent v - Ar cross section. High efficiency (64%) & high purity (93%) v_{μ} CC selection. Robust energy reconstruction

Phys. Rev. Lett. 128, 241801 (2022) Phys. Rev. D 105, 112005 (2022)

MicroBooNE 6.369×10^{20} POT

Pred. uncertainty NC, 22.5

2000

250

v. CC, 333.1

500

40

35E

30E

Events/100 MeV

Others, 10.0

 $v_{\rm II}$ CC, 19.3

eLEE Model (x=1), 37.0

1000

Search for low-energy excess v_e Relatively high efficiency (46%) & high purity (82%) v_e CC selection >3 σ exclude an empirical model of LEE derived from MiniBooNE

Reconstructed E_{ν} (MeV)

1500

Sterile neutrino oscillation

First constraint on eV scale sterile neutrino oscillation in SBN program; and first such analysis considering a complete 3+1 (app. + disapp.) model

Ongoing reconstruction effort - WireCell in MicroBooNE

Wire-Cell PID information as input

Looking Forward

- Sharing algorithms for other experiments
 - porting from wire-cell-prototype to wire-cell-toolkit
- Sharing knowledge and expertise to other experiments
 - happening now
 - see SBND and ProtoDUNE talks
- Benefit from new developments in other experiments
- Improvement on clustering/pattern recognition for single photon or e+e- pair searches in the context of exotic physics models
- Open-minded to use other reconstruction tools or in synergy with other reconstruction paradigms
 - exchange ideas and knowledge of the detector gained in the development of reconstruction tools > well defined problem domain and do better
 - e.g. DL-assisted neutrino vertexing; RNN energy estimator; DNN ROI ...