Wire-Cell in SBND

Lynn Tung & Ewerton Belchior on behalf of SBND Wire-Cell Team

Wire-Cell 2nd Reconstruction Summit **Brookhaven National Laboratory April 11, 2024**

Outline

- SBND overview
 - detector, status, and physics capabilities
- Wire-Cell Signal Processing in SBND
- Wire-Cell 3D Imaging in SBND
- Wire-Cell in SBND current status, workflow, and experiment needs

Booster Neutrino Beam (BNB)

• SBND is the near detector of the Short-Baseline Neutrino Program, situated on the

SBND

Simulation

 ν_{μ} CC

multi-pion

- to simplify, no space charge effect nor cosmics were simulated
- Total of 31,145 reconstructed slices
- 0.58 scaling factor, we expect to get 18,000 reconstructed DNu slices
- There's a bug affecting dE/dx reconstruction

11/03/22

April 11th, 2024 4

Lynn Tung & Ewerton Belchior | WireCell 2nd Reconstruction Summit

11 cm

SBND will record the largest dataset of of neutrino-Argon interactions to date

DNu Search with SBND | Iker de Icaza

- neutrino-nucleus interactions
 - mature early data analyses: CC U,, inclusive, CC ν_{μ} inclusive, CC $\nu_{\mu} \sqrt{p} \sqrt{\pi}$ (stay tuned for this summer!)
 - SBND PRISM (off-axisoflux effect)
- Area Normalized [0.2°, 0.4°), 452330 [0.4°, 0.6°), 723698 [0.6°, 0.8°), 885002 [0.8°, 1.0°), 869121 - [1.0°, 1.2°), 711423 2.5 3.0
 - beyond the standard model scenarios
 - HNLs, dark neutrinos, fight dark matter, many more... -80
 - neutrino oscillations
 - near detector to constrain systematic
 FIG. 3: Locations and uncertainties of the points of uncertainties for oscillation analyses of lines defined by two

–100<u></u>≞⊥ –10

get's edge. The target, denoted by the red cross, is (0,0). The canendate signal event, denoted with a bl is consistent with originating from the target within Only points at a distance < 10 (100) m from

X (cm)

SBND Detector

*north, east, bottom CRT panels not pictured

5 April 11th, 2024 Lynn Tung & Ewerton Belchior | WireCell 2nd Reconstruction Summit

Liquid Argon Time Projection Chambers (2 drift volumes)

Photon Detection System (PDS)

• outfitted with 312 photo-detectors (120 PMTs and 192 X-ARAPUCAs)

TPB-coated reflective cathode

can see both visible and VUV light

Cosmic Ray Tagger (CRT)

 a total of 7 CRT planes for full coverage around the SBND detector

SBND **Status**

currently commissioning the detector!

Wire-Cell in SBND

- Wire-Cell Prototype, or WCP, was originally developed alongside the needs of MicroBooNE
- ProtoDUNE (SP, HD, VD), and ICARUS
- SBND in particular has ushered in several novel studies and features:
 - further DNN ROI development, implementation soon (Mun's talk yesterday!)
 - signal processing optimization and comprehensive validation
 - 3D imaging implementation and validation
 - more to come!

• Wire-Cell *Toolkit*, or WCT, is under active development and has integration in SBND,

April 11th, 2024 Lynn Tung & Ewerton Belchior | WireCell 2nd Reconstruction Summit 8

April 11th, 2024 Lynn Tung & Ewerton Belchior | WireCell 2nd Reconstruction Summit 9

CHICAGO

 optimization and performance metric: integrated deconvolved charge vs. *integrated* simulated charge

LGU THE UNIVERSITY OF CHICAGO

- optimization and performance metric: integrated deconvolved charge vs. *integrated* simulated charge
 - for optimization, we performed coordinate **descent** over filter parameters
 - minimize charge extraction bias and spread
 - choose filter values based on performance for all track angle ranges

Raw Waveforms

Using (default) filter values from uBooNE & ProtoDUNE

*further optimization is under development using **DNN ROI** see Mun's talk yesterday for more details

Signal Processing in SBND Performance

- we will use the same metric to evaluate the **signal** processing performance quantitatively
- performance evaluation is performed within *different* particle types
 - muons vs. protons (tracks) vs. electrons (showers)

$\begin{array}{l} \textbf{performance} \\ \textbf{metric} \end{array} \equiv \frac{Q_{deco} - Q_{true}}{Q_{true}} \end{array}$

True Ionization Charge

compare charge to evaluate performance

.

Optimized 2D Deco. + SP

Signal Processing in SBND **Performance: All Particle Types**

- muons (track-like minimizing-ionizing particles), protons (track-like stopping particles), and **electrons** (shower-like)
- overall, performance is good and the observed trends are expected!
- the first particle-type specific WireCell signal processing studies

Signal Processing in SBND **Performance: Electron case**

- the **bias becomes** increasingly negative with increasing energy (for induction planes)
 - resolution is stable
- at higher energies, shower topologies become more complicated
 - bipolar cancellation and \bullet prolonged tracks become more frequent

Signal Processing in SBND **Electronics Response**

time [us]

T(

- cancellation

Lynn Tung & Ewerton Belchior | WireCell 2nd Reconstruction Summit

electronics response (shaping, amplifying) is an important component of 2D deconvolution

$$A_0 \cdot C_A$$

$$(s) = \frac{A_0 \cdot C_A}{(p_0 + s) \cdot (p_{i1}^2 + (p_{r1} + s)^2) \cdot (p_{i2}^2 + (p_{r2} + s)^2)}, \quad \begin{array}{l} \text{ideal response} \\ \text{(semi-Gaussian} \\ \text{anti-aliasing filter} \end{array}$$

the *ideal response* does not account for effects seen in data such as overshoot and undershoot

realistic response includes imperfect pole-zero

$$T_1(s) = T(s) \cdot \frac{(k_3 + s)(k_4 + s)}{(k_5 + s)(k_6 + s)} \text{ updated response}$$

we are validating and implementing this updated electronics model in the SBND Calibrations workflow, working together with ProtoDUNE WireCell team

LGU THE UNIVERSITY OF CHICAGO

Signal Processing in SBND

- in summary, we have:
 - (first-pass) optimized SP filter values on simulation
 - evaluated SP performance of different simulated particle types (muon, proton, electrons)
 - performed studies on the energy dependence of electron signal processing
- WireCell TPC simulation and signal processing is fully implemented and validated in the official SBND workflow!
 - WireCell Drift+SP is used by default in the next SBND production campaign
- next task... 3D imaging!

3D Imaging in SBND

 more details about imaging and reconstruction will be presented on Friday by Haiwang:

- for SBND, we have reached the "charge" solving" and *proto-clustering* stage in the 3D imaging workflow
 - "physics-related" clustering (clustering by particle or interaction) is still in-progress

3D Imaging in SBND Evaluation Method

- we performed quantitative evaluation of 3D imaging performance for the first time using: scipy.spatial.KDTree.query_ball_tree
 - matches pairs between points of two points clouds with arbitrary dimension
- preliminary performance metrics:

true charge matched to image point total true charge image charge matched to true point total image charge

THE UNIVERSITY OF CHICAGO

LSU

3D Imaging in SBND Evaluation Method

what percentage of image charge can be associated to truth?

3D Imaging in SBND Performance

BNB+Cosmics Imaging Performance Metrics [400 events]

- performance on simulated neutrino+cosmic events is quite good!
- events with lower purity (<90%) can be attributed to isochronous and/or prolonged tracks, where lower performance is expected

3D Imaging in SBND

- 3D imaging (~space-point reconstruction only) has been quantitatively evaluated for SBND simulation, with very promising results
 - validation also performed for particle-gun muon and electrons, both with very good performance (>90%)
- lots of work has been done to update the 3D imaging workflow to be compatible with SBND/other LArTPC experiments

- next task... preliminary clustering + charge-light matching!
 - currently in-progress!

Charge-Light Matching in SBND

- SBND light simulation and reconstruction is very sophisticated
 - measurement of drift position!
 - uses semi-analytical photon library in the active volume [Garcia-Gamez, D., Green, P. & Szelc, A.M. Eur. Phys. J. C 81, 349 (2021)]
- flash-matching $\rightarrow \chi^2$ calculated for hypothesis flashes from Pandora Slices and measured flash(es) from beam spill flash(es)
 - similar in concept to Wire-Cell flash-matching
- ongoing studies on using light calorimetry (energy reconstruction with light)

• we measure and simulate both direct VUV and reflected visible light \rightarrow light-only

Charge-Light Matching in SBND

- status of implementation in WireCell Toolkit (WCT)
 - **recob**::**OpFlashes** imported to WCT (thanks to Haiwang!)
 - SBND PDS geometry in BEE display (thanks to Chao!)
- challenges/work needed:
 - importing/implementing SBND's photon library
 - semi-analytic photon library calculates PE at each optical detector given (1) the energy deposit position and (2) geometry/position of optical detector
 - SBND has two optically-isolated TPCs
 - constraining flash-matching using higher-level light reconstruction information (such as drift position)

BEE Display w/ SBND PDS Geometry

LESU THE UNIVERSITY OF CHICAGO

technical integration of WCT in SBND!

- Integration initiated using WCT configurations available from different experiments;
- (Many!) configuration (jsonnet) and C++ modifications, with help of WCT experts!!
- Successfully integrated a workflow for 2D simulation + 2D signal processing (see this talk). Two workflows available: single-step workflow with simulation + signal processing and separate workflow for simulation / signal processing. Both can save RawDigits.
- **3D imaging successfully integrated locally!** (upload configurations to SBND soon)
- Extensive set of tests right after integration to make sure everything works as expected, before making it available for users in SBND!!!

Multi-threading and electronics noise simulation

- Wirecell multi-threading extensively tested on gpvm/grid WCT with electronics noise simulation in SBND \bullet (protoDUNE noise frequency spectra for now. Shared services (thread-safe) enabled in SBND! (default Using SBND data soon to update!).
- were legacy services)

LGU THE UNIVERSITY OF CHICAGO

Integration of imaging in SBND and I/O question

- SBND final clustering to be checked/finalized; current output data format is .tar.gz. (see <u>Brett's talk</u>). Right now we use a script to convert it to Bee display format for visualization;
- Input to high-level reconstruction algorithms within WCT workflow (see <u>Chao's talk</u>), until final data product. Is there a way to have an unified data format that can be used both by larsoft and WireCell to handle those final high-level products? (see <u>Brett's</u> talk)

Aquestion on DNN ROl

- DNN ROI shows better performance than traditional ROI (e.g. prolonged tracks). lacksquare
- PyTorch-based implementation with multi-plane ROI matching concept. Currently implemented in WCT as as a better-performance alternative when compared to traditional ROI (traditional ROI is the current approach in SBND production workflow):
- Uses MP2/MP3/decon loose LF filter images in **time vs wire** bins as input for training and evaluation (HDF5 data format for internal WCT data handling)
- DNN ROI is a competitive approach w.r.t. traditional ROI. Is there an automated workflow w.r.t. training/validation? •
- Is it possible to have a hybrid CPU/GPU usage on grid clusters? (depending on computing resources)

channel channel channel MP2 MP3 2: Matching active wires (with initial ROI) from multiple planes 3: On target plane, tag 3-plane active wire in the time-slice matched ROIs (MP3) or 2-plane ref. plane, target plane matched ROIs (MP2) --- in-active wire in the time-slice

WireCell versus calibration database

- Current electronics response function has many parameters, which are expect noise filtering to need to store some info as well;
- Is it possible to have WireCell communicating with the <u>SBND calibration</u> chndb.jsonnet).

currently hard-coded. Those parameters will be stored in SBND database. We

<u>database</u> (accessible via ssh –K sbnd@sbnd-gateway01.fnal.gov)? WireCell stores some data as a "jsonnet-based" internal database (e.g.

A question on prompt signal processing

- (e.g. event processing) in a parallel way;
- the input data stream it can read at a time (one artROOT event at a time);
- current interface between larsoft and WireCell is larwirecell;
- memory) when running WireCell parallel engine (TbbFlow)?

• For prompt signal processing, it would be highly desirable to be able to execute tasks

• WireCell multi-threading engine (TbbFlow) is a powerful engine to speed up data processing, it has shown a great performance on the grid, but right now is limited by

• Is there a way to maximize the input data stream that WireCell signal processing workflow can read at a time? Is it possible to reduce I/O steps in this process? The

• Should we be able to have dynamic allocation of computing resources (#cores,

Wire-Cell for SBN Physics

- ICARUS has been taking data since 2022, and SBND data-taking is imminent!
 - BNB \approx 3.5e19 5.2e19 POT/month = ~300k ν_{μ} and 2k ν_{e} CC events in SBND
- very mature analyses in SBND for various channels using Pandora reco:
 - CC ν_{μ} inc., CC ν_{e} inc., CC $\nu_{\mu} 1 e 0 \pi$, NC π^{0} , and many more
 - from informal discussions with analyzers, at minimum we need Wire-Cell clustering, vertexing, track-shower separation
- where and how will Wire-Cell have the most impact for SBND Physics analyses?
 - we need solutions for LArSoft/Pandora interface with WCT in the short-term
 - SBN/SBND will be a great testbed for potential long-term solutions

Summary

- there is major effort in SBND to develop, integrate, and validate WCT!
- tools
- SBND's (very large) dataset could benefit enormously from Wire-Cell reconstruction, especially on the ν_{ρ} front, but it will require lots of fast-approaching work
 - an opportunity to test long-term solutions (for DUNE)!
- SBND Wire-Cell team:
 - UChicago: Lynn Tung, Mun Jung Jung, Avinay Bhat, Matt King, Dave Schmitz, Bonnie Fleming
 - LSU: Ewerton Belchior, Hanyu Wei
 - BNL: Haiwang Yu

in particular, we have done additional optimization and quantitative validation on WCT

thank you very much!!

