
Framework/Wire-Cell interface aspects
Kyle Knoepfel
The Second Wire-Cell Reconstruction Summit
11 April 2024

Wire-Cell
(you already know this one)

Definitions

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit1

Wire-Cell
(you already know this one)

Framework

Definitions

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit2

Wire-Cell
(you already know this one)

Framework

Interface

Definitions

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit3

Wire-Cell
(you already know this one)

Framework

Interface

Definitions

We’ll start with framework concepts and then get to interface aspects.

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit4

• The term “framework” is used often in HEP, usually without definition. The assumption is that
“you know it when you see it,” or that you recognize the contexts in which it is used (HLT,
reconstruction, etc.).

• The user “plugs in” their code to a framework, often through dynamically loaded libraries
called “plugins”.

HEP frameworks

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit5

• The term “framework” is used often in HEP, usually without definition. The assumption is that
“you know it when you see it,” or that you recognize the contexts in which it is used (HLT,
reconstruction, etc.).

• The user “plugs in” their code to a framework, often through dynamically loaded libraries
called “plugins”.

• This often means that the framework owns the ‘int main(…)’ function, which calls user
code under the covers.

• Frameworks are often used in a high-level trigger environment, for reconstructing physics
objects from detector signals, or for simulating physics processes.
– HEP frameworks are often not used in the context of analysis.

HEP frameworks

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit6

Existing HEP frameworks

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit7

There are several existing frameworks (e.g.):

• art: Used by most intensity-frontier experiments at Fermilab. Originated as a fork of CMSSW
ca. 2010.

• CMSSW framework: Used by the CMS experiment. CMSSW comprises the framework,
other core functionality, physics algorithms, etc.

• Gaudi: Used by ATLAS, LHCb, Daya Bay, and MINERvA. Gaudi comes in different flavors
highly tailored according to the experiments’ needs.

• JANA2: Used by the Electron-Ion Collider.

• O2: Used by ALICE.

Existing HEP frameworks

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit8

There are several existing frameworks (e.g.):

• art: Used by most intensity-frontier experiments at Fermilab. Originated as a fork of CMSSW
ca. 2010.

• CMSSW framework: Used by the CMS experiment. CMSSW comprises the framework,
other core functionality, physics algorithms, etc.

• Gaudi: Used by ATLAS, LHCb, Daya Bay, and MINERvA. Gaudi comes in different flavors
highly tailored according to the experiments’ needs.

• JANA2: Used by the Electron-Ion Collider.

• O2: Used by ALICE.

• (Wire-Cell: Contains many framework ingredients modulo a provenance system and an
extensive I/O layer.)

What we are not talking about

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit9

Examples that are not data-processing frameworks:

• LArSoft: LAr toolkit/library that is designed to be framework-agnostic

• ROOT: toolkit used ubiquitously in HEP analysis and as underlying library for persisting C++
data structures to disk.

• Geant4: library used for detector simulation, response, etc.

• A particular computing language (C++, Python, etc.): Even though a framework is often
implemented in a specific language, the language is not a framework.

• Small programs written by physicists: often used for individual analyses.

What we are not talking about

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit10

Examples that are not data-processing frameworks:

• LArSoft: LAr toolkit/library that is designed to be framework-agnostic

• ROOT: toolkit used ubiquitously in HEP analysis and as underlying library for persisting C++
data structures to disk.

• Geant4: library used for detector simulation, response, etc.

• A particular computing language (C++, Python, etc.): Even though a framework is often
implemented in a specific language, the language is not a framework.

• Small programs written by physicists: often used for individual analyses.

A framework is intended for decomposing workflows into units.
It is a means of sharing code, data, and workflow patterns.

Interface aspects

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit11

Interface aspects

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit12

framework input
data flow

framework output
data flow

Interface aspects

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit13

Algorithmframework input
data flow

framework output
data flow

Algorithm

Interface aspects

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit14

Algorithms have internal structure / data flow

framework input
data flow

framework output
data flow

Algorithm

Interface aspects

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit15

Algorithms have internal structure / data flow

This can lead to mismatches
in data flow concepts
between the framework and
the algorithm(s).

framework input
data flow

framework output
data flow

Algorithm

Interface aspects

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit16

Algorithms have internal structure / data flow

framework input
data flow

framework output
data flow

This can lead to mismatches
in data flow concepts
between the framework and
the algorithm(s).

Coarse translation layers between
Wire-Cell and the framework

• See Brett’s earlier talk

• Some complications create an “impedance mismatch” that (a) requires extra effort to
overcome, and (b) results in execution inefficiencies:
1. Differences in configuration patterns used by different libraries (not just the languages)

2. Mismatch in data layouts expected by different libraries (LArSoft vs. Wire-Cell)

3. Suboptimal granularity of data as presented to Wire-Cell (event-level vs. frame-level vs. …)

• Items 1 and 2 resolved by coordination among libraries

• Solving item 3 requires a better framework solution (today’s focus)

Translation layers between Wire-Cell and the framework

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit17

A better framework / Wire-Cell interface

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit18

Wire-Cellframework input
data flow

framework output
data flow

Current interface

A better framework / Wire-Cell interface

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit19

Wire-Cellframework input
data flow

framework output
data flow

Future interface?

Can the interface boundary between the framework and Wire-Cell be thinner?
 - Ideally, the framework presents the data in a way that is best suited for Wire-Cell.

• Meld is a prototype framework that was developed as part of an LDRD project, aimed at
exploring what would meet DUNE’s data-processing needs.
– https://github.com/knoepfel/meld

• Its goals:
1. Enable users to specify the organization of data that makes the most sense for the job

2. Optimize workflow execution of user algorithms through graph-based data-flow processing

3. Adopt programming patterns that are naturally thread-safe using higher-order functions

4. Minimize boilerplate code for registering user algorithms with the framework

• Fermilab’s CSAI directorate has stated its commitment to develop a DUNE framework in a
manner motivated by Meld’s model.

Meld and DUNE’s future framework

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit20

https://github.com/knoepfel/meld

• In the most widely used HEP frameworks, the data are organized according to a rigid
hierarchy of data-processing levels:

𝑟𝑢𝑛	 ⊃ 𝑠𝑢𝑏𝑟𝑢𝑛	 ⊃ 𝑒𝑣𝑒𝑛𝑡

• DUNE needs something more flexible than this:
– Different processing levels must be specifiable by the user
– The relationships among the processing levels might be more complicated

Different data organizations

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit21

• In the most widely used HEP frameworks, the data are organized according to a rigid
hierarchy of data-processing levels:

𝑟𝑢𝑛	 ⊃ 𝑠𝑢𝑏𝑟𝑢𝑛	 ⊃ 𝑒𝑣𝑒𝑛𝑡

• DUNE needs something more flexible than this:
– Different processing levels must be specifiable by the user
– The relationships among the processing levels might be more complicated

Different data organizations

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit22

art-based hierarchy Non-trivial hierarchy

[info] Processed levels:

 job
 │
 └ run: 1
 │
 └ subrun: 2
 │
 └ event: 10

[info] Processed levels:

 job
 │
 ├ trigger primitive: 10
 │
 └ run: 2
 │
 └ event: 10

[info] Processed levels:

 job
 │
 └ event: 100000

Flat hierarchy

Sample
hierarchies:

• Create tracks from hits for each event.

Framework boilerplate

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit23

Tracks make_tracks(Hits const& hits) { ... }

• Create tracks from hits for each event.

Framework boilerplate

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit24

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

Tracks make_tracks(Hits const& hits) { ... }

namespace expt {
 class TrackMaker : public art::SharedProducer {
 public:
 TrackMaker(fhicl::ParameterSet const&)

 {
 consumes<Hits, art::InEvent>("GoodHits");
 produces<Tracks, art::InEvent>("GoodTracks");

 async<art::InEvent>();
 }

 void produce(art::Event& e,
 art::ProcessingFrame const&) override

 {
 auto const& hits = e.getProduct<Hits>("GoodHits");
 auto tracks = make_tracks(hits);
 e.put(std::make_unique<Tracks>(std::move(tracks)),
 "GoodTracks");
 }
 };

}

DEFINE_ART_MODULE(expt::TrackMaker)

Tracks make_tracks(Hits const& hits) { ... }

• Create tracks from hits for each event.

Framework boilerplate

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit25

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

Tracks make_tracks(Hits const& hits) { ... }

namespace expt {
 class TrackMaker : public art::SharedProducer {
 public:
 TrackMaker(fhicl::ParameterSet const&)

 {
 consumes<Hits, art::InEvent>("GoodHits");
 produces<Tracks, art::InEvent>("GoodTracks");

 async<art::InEvent>();
 }

 void produce(art::Event& e,
 art::ProcessingFrame const&) override

 {
 auto const& hits = e.getProduct<Hits>("GoodHits");
 auto tracks = make_tracks(hits);
 e.put(std::make_unique<Tracks>(std::move(tracks)),
 "GoodTracks");
 }
 };

}

DEFINE_ART_MODULE(expt::TrackMaker)

Tracks make_tracks(Hits const& hits) { ... }

Please don’t read this.

It has what you need to use make_tracks in art.

But using make_tracks in a framework should be easier.

• Create tracks from hits for each event.

Framework boilerplate

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit26

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

Tracks make_tracks(Hits const& hits) { ... }

namespace expt {
 class TrackMaker : public art::SharedProducer {
 public:
 TrackMaker(fhicl::ParameterSet const&)

 {
 consumes<Hits, art::InEvent>("GoodHits");
 produces<Tracks, art::InEvent>("GoodTracks");

 async<art::InEvent>();
 }

 void produce(art::Event& e,
 art::ProcessingFrame const&) override

 {
 auto const& hits = e.getProduct<Hits>("GoodHits");
 auto tracks = make_tracks(hits);
 e.put(std::make_unique<Tracks>(std::move(tracks)),
 "GoodTracks");
 }
 };

}

DEFINE_ART_MODULE(expt::TrackMaker)

Tracks make_tracks(Hits const& hits) { ... }

#include "meld/module.hpp"

Tracks make_tracks(Hits const& hits) { ... }

DEFINE_MODULE(m, config) {
 m.with(make_tracks, concurrency::unlimited)
 .transform("GoodHits").in_each("Event")
 .to("GoodTracks");

}

An easier way

• Create tracks from hits for each event.

Framework boilerplate

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit27

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

Tracks make_tracks(Hits const& hits) { ... }

namespace expt {
 class TrackMaker : public art::SharedProducer {
 public:
 TrackMaker(fhicl::ParameterSet const&)

 {
 consumes<Hits, art::InEvent>("GoodHits");
 produces<Tracks, art::InEvent>("GoodTracks");

 async<art::InEvent>();
 }

 void produce(art::Event& e,
 art::ProcessingFrame const&) override

 {
 auto const& hits = e.getProduct<Hits>("GoodHits");
 auto tracks = make_tracks(hits);
 e.put(std::make_unique<Tracks>(std::move(tracks)),
 "GoodTracks");
 }
 };

}

DEFINE_ART_MODULE(expt::TrackMaker)

Tracks make_tracks(Hits const& hits) { ... }

#include "meld/module.hpp"

Tracks make_tracks(Hits const& hits) { ... }

DEFINE_MODULE(m, config) {
 m.with(make_tracks, concurrency::unlimited)
 .transform("GoodHits").in_each("Event")
 .to("GoodTracks");

}

• Minimal boilerplate.
• Event is now a label.

An easier way

• Create tracks from hits for each event.

Framework boilerplate

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit28

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

Tracks make_tracks(Hits const& hits) { ... }

namespace expt {
 class TrackMaker : public art::SharedProducer {
 public:
 TrackMaker(fhicl::ParameterSet const&)

 {
 consumes<Hits, art::InEvent>("GoodHits");
 produces<Tracks, art::InEvent>("GoodTracks");

 async<art::InEvent>();
 }

 void produce(art::Event& e,
 art::ProcessingFrame const&) override

 {
 auto const& hits = e.getProduct<Hits>("GoodHits");
 auto tracks = make_tracks(hits);
 e.put(std::make_unique<Tracks>(std::move(tracks)),
 "GoodTracks");
 }
 };

}

DEFINE_ART_MODULE(expt::TrackMaker)

Tracks make_tracks(Hits const& hits) { ... }

#include "meld/module.hpp"

Tracks make_tracks(Hits const& hits) { ... }

DEFINE_MODULE(m, config) {
 m.with(make_tracks, concurrency::unlimited)
 .transform("GoodHits").in_each("Event")
 .to("GoodTracks");

}

• Minimal boilerplate.
• Event is now a label.

The system developed for DUNE will support various
data-processing patterns, conditions information, etc.

An easier way

• Both Meld and Wire-Cell use oneTBB’s flow-graph concurrency library (shared thread pool)

• Incorporating Wire-Cell components to run within a framework context could be simpler (e.g.):
– Break apart an “event” at the framework level into (e.g.) “frames”

– Register Wire-Cell components to operate on data contained in frames

– If necessary, collect (or reduce) Wire-Cell generated data into “event”-level data

Relevance to Wire-Cell

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit29

• Both Meld and Wire-Cell use oneTBB’s flow-graph concurrency library (shared thread pool)

• Incorporating Wire-Cell components to run within a framework context could be simpler (e.g.):
– Break apart an “event” at the framework level into (e.g.) “frames”

– Register Wire-Cell components to operate on data contained in frames

– If necessary, collect (or reduce) Wire-Cell generated data into “event”-level data

• Might remove (or at least reduce) the need for event visitors

• It’s conceivable that the DUNE framework and Wire-Cell could use the same data-flow graph.
– Could result in efficiency improvements (to be demonstrated)

– Requires consistency in configuration patterns

Relevance to Wire-Cell

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit30

• The framework/Wire-Cell interface is non-trivial, but it works.

• It could be improved by addressing the impedance mismatch induced by differences in
configuration patterns, data design, and data-level granularities.

• The granularity problem should be alleviated by improvements to the framework (a la Meld).

• We should work toward resolving the other issues.

Conclusion

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit31

• https://en.wikipedia.org/wiki/Software_framework

• https://en.wikipedia.org/wiki/Interface_(computing)

• https://byjus.com/question-answer/what-is-the-function-of-capillary-blood-vessels/

• https://github.com/knoepfel/meld

• https://ffipractitioner.org/wp-content/uploads/2014/11/ffi-working-together.jpg

References

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit32

https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Interface_(computing)
https://byjus.com/question-answer/what-is-the-function-of-capillary-blood-vessels/
https://github.com/knoepfel/meld
https://ffipractitioner.org/wp-content/uploads/2014/11/ffi-working-together.jpg

Backup slides

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit33

We want to recast this type of procedural processing…

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit34

a a a a

a a a a

b b b b

b b b b

f f f f

f f f f𝓔𝟓 𝓔𝟔 𝓔𝟕

𝓔𝟏 𝓔𝟐 𝓔𝟑

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡
c c c c

c c c c

K K

K K

𝓔𝟖

𝓔𝟒
g g

g g

g g

g g

… as a graph of higher-order functions.

4/11/24 Kyle J. Knoepfel | Wire-Cell Reconstruction Summit35

f

𝑎 !

(𝑏)!

𝑐 !

𝐾 "

𝓡
𝓢𝜶

𝓔𝒏
g

The above does not specify any implementation.
• For memory-bound applications, the graph could be processed one event at a time.
• For some algorithms, data could be batched across many events and offloaded to a GPU.
• More exotic combinations.

Higher-order function Signature User function
Transform (Map) 𝑓 ∗ 𝑎 ! → 𝑏 ! 𝑓 𝑎 → 𝑏

Filter 𝑓 ⊲ 𝑎 !→ 𝑎 " 𝑓 𝑎 → Boolean

Monitor 𝑓 ⊲ 𝑎 !→ () 𝑓 𝑎 → Void

Reduction (Fold) 𝑔 !/ 𝑐 ! → 𝐾 𝑔 𝐾, 𝑐 → 𝐾

Splitter (Unfold) 𝑓 !\𝑎 → 𝑑 ! 𝑓! 𝑎 → 𝑑 !

Higher-order functions operate on sequences—e.g. 𝑎 !.

