
LARDON		
LIQUID	ARGON	RECONSTRUCTION	DONE	IN	PYTHON

Laura Zambelli - LAPP / CNRS
April 11th 2024

Wirecell 2nd Summit - BNL

2

Goal, Reasons, History

Started in 2019 with ProtoDUNE-DP operation
- At first I wanted have a quick event display and inspect the data
- Written in python as a personal challenge

It was then used to understand, study and filter the noise of ProtoDUNE-DP data
- Noise filtering requires ROI - easily transformed into hit finder
- I re-used some reconstruction code I wrote for QScan (DP own reconstruction/simulation code)
- Being in a COVID lockdown helps a lot to develop a framework

ProtoDUNE-DP data was reconstructed with LARDON together with LArSoft
- Consistent results obtained, DP paper under internal review

LARDON was adapted to the new Vertical-Drift design
- New features: 3-views, induction signal, Bottom-electronics
- First read and analyzed 50L data (VD small R&D setup)
- Successfully reconstructed all VD-Coldbox data campaign for both top and bottom CRPs

LARDON is completely independent from LArSoft, Art and ROOT

3

LARDON code flow
The code is on GitHub at : https://github.com/dune-lardon/lardon

Lardon

Pedestal

store

Noise
filter

Read raw
file

Data
container

Det spec Channel
mapper

Hit
finder

Track
finders

Set the proper
electronics/
detector
parameters

Read the raw data
and get the
channel mapping

Noise related :
mask the
signal and
filter the noise

Plotting

Find hits, 2d &
3d tracks

Control plots : ED,
noise RMS,
waveforms, …

Output file (hdf5)

Main module that
centralize all
actions

Module containing the data
(waveforms, hits, ….) &

1 2

3 4

Whenever When necessary

List of needed
python libraries

https://github.com/dune-lardon/lardon

<latexit sha1_base64="kWsuJtHD7TvB29SS473YhJLoDbs=">AAAzR3ic1VtLcxvHER45D9vMy0oOPuSyjKgqKwZAvGlaRmJLceSklJRiS7RKFJMCgSWJEl4BFqRImL8t5/yE/APnlFsqx3R/M7Mzszu7AEFItoUqYjGPnu6vH9M9szoc93vTqFz+1403vvf9H/zwzbfe3vjRj3/y05+9c/Pne9PRbNIJn3RG/dHk6WF7GvZ7w/BJ1Iv64dPxJGwPDvvhl4cv7nP/l6fhZNobDR9H5+PwYNA+HvaOep12RE2jm+8+Fc9FV4TiiL5PxUzMRVE0RVlcig2n55R6fO0X1F4WJbRvJGi1xcuMWaeqryKq8WyXquy3KR9S77HoiSG1H9H3Ma0woTY5t0NPQxHR3wnGHHtmRfT9gmiP6btDv8x8Hsk0+/TZFw/EiL67oDih5644EIF4j5CpET81sSMKeL5DrUyBabWxZp9+8UgzjkfdTdA/Eyf0zLxKunOL8vuQuSIaxFdB9dht2WvOYxrFBI2a0yL52RC3Sa4J0Tij2VOixriN6SkA3S59d0j2CVabUs8IrRLbAPrhdluygGQbU0+k9DAULVr9Iebw2H2L45aykQJoTpU0HfRUSIYSWcaYWg8gg0tVctYHdy1xD5x3SLOfU39XbIo6SftNInsdRE4zEOFVmksi8iea36VW9pETGnOPemY08ruNzEUOMvUlkXkEJAbfMBIBvO8zosBeFhFvAeJUQNpqE/0ueO7CmgNCjHlnHx0R56HioI3fQ/jrb/Fhms9jn96PZS3QiFOgcY7VTpS3cAz7DXo5xkVALYRn8+8ZvJ11skvcfxhHv6aKfeyfHNsundiY7C3S5z1vT0D0pYz78F9pqcwNR5opNFsC7TlJ9RBcHYO/PRodImo9o9WlXeXHVzduS10sE7uDeOxdZ3/Su1MRPDbi3Usjn4xI+RqweSzE1CV2AVkf29ZU7WBmX72EdTE6HeCV7FsW4QIsi/1jDF59iD9RONsyHtKctpIiS7rAka8KP7UllLbWQT/bWA1/S4S9y73mt6S0YqTR3E6Jity/ImB1Ab6Z3pb4K7KDHlbaii3GliUrXq5Xb6c5ejtdQW+LtLb3mrRWXLveirma21ghyl1VVxc5urp4Bbp65rVLV1uujrrYAU4URSlbUjKpP7tVI5jcK1a3C/nU9NiFiUfrtI0ti67fPm4v2AtkTC8oOyvl7ARmZM3C7jb95h2ZsRnRaN6F28hodE7MEfUceUpIlunqNN82eZcsO/vmrmpZfb/cIq62PLEgi5OytVNrTsqoZHivczlpk+WMYC8uJ34+zhUfb4MTQ0XrsK/oaB5bjl1qnbYsnfJo9tohLJZxD4mLFvE7VugM0N+jb44SQWxJLezynZzIcQCNRjEmUgvzGMks/v3cBxb/bvvq/FfA//J8mnXtOSVEjpLKytJau8jYNV0pZvQrQl8SQzf/Wux19lg5Mr22bblfEcWvMir0UiILTfZkI1RARs5R+yyFsJmfn33UUMc2RAA9+TDMl6NpcWsiuukx6GTJYPunneW3kNXbctl0ywslK9PHleo2PlmyyTyYM/cR9Bx5LcPVl445yWrBH3MYZ1/UmeMM6IieHovfiU+xb99dyO8n4u/YYwagJGtSEx2TnNqnPevj957Db3Jfewyv2cTp2iYyVqnzTdSZGt1GbD+NHI8rYifXo+6qtYwEcq1kpeizoTpoyMrJF02eY+ZLWFNH5VVD2Fioqs8z7KV9S+5VpW4sJXXdcz63zlXkqLqF7bcF2TQfyTgXQL516TEZ+yZxbZy3d8yVXepa+9dxnl7DubI+Y+G+9+MxOl/XY+5AlmK8vzRiL244fYsp+VZLcnQnlWuZnGAIpELk7Ea2PJnyZMkeZVNI8+dmk1oPdpVix6qyE61czf+ZKrAyZYq2vxrax5D73LEsmVHXY+yTtvVHnMu3PVbqo1aMc/m6yiqS9L6AJX6NCOyvIT+i2YUlaqCD2H503dNIWdbOUn0fOH11i6KvR+dMlVRfLdWbrrCqGKe1596H8N40g9wTwob9+BKRaIQd6Dl9GJEOqpop/QpxKpiemeXjfs9mnh8ipw3FA9hfqKJgssJsWPIlkeEeg/Oq1ZHeb7mu5Bx7K7Hj+uLV4vpY815WNulWxnNYbxs6aEI72/huYO0P43raVy3XM6rlh5SzfE5ofip0jcxrjsGfr/q7qjT1TGnqsMQK+N5NaWM9nJtTi9f74RXbiIry1usilYfpmLSJm0yJF1fx1fjMw58X7ApzN+hmW/4qbSf2BhklTOw8gr9GoBDBU3WenozVbZwajdXdSIC8VN43mKzYthEtW348bMZc7Tgeupto93moOesZqHwhQGWxJ3zZ36pYu/ewi5BurgHpTyhrvPR43fUQ3XltiFbieJttvVXnbsTQXP5WbxdZZvpOr0G887lMX83jbJJP6BmnFmlygFOPRXd9RrbGtWRzbUafN2f7ZnUli3lGbffBfV9x1UPU8VnRojPvpBVVMvwymTHkW5HMd9mWXjjWZOZn3aP4sapgn1sFqz1q+wMykdkCpK56s2MjZ+zERc60 vzr/K2MvzbfRijqh/a7531Vlc20sebeabVu1lWzrydK2tewtb9Kmqhk2Vb2STRVVVZbtjb5qySBUxi6yCkJfQLIQb0hdd48ztuDiYdqXx6PixWOxrwWq1lhkk3pcc+lMwqCt78tWwfs+6J2otXyIu6u7UjU96No9V8G3kkJ3ubtKU0not0D0yWlTZWb+81L/LdKFVc9k3/M11N1ZUdlSNUe7TSHv+YqWV7gY26iWU/Gf32WSvG4BNa5s0zVXksbu0jSSebmL7kdCv8eTtoMS7n/9tmB6fd5mbj/yTobscyH/XQG/7bPc/UeeJA1gniWJ6fVlNe75+zolWV2WrOhn+l6lJDLzqq9JL9WMnc3tS2ZM65QleRe1znOoRmLHdKOp+yZB9g5+3ZOoVU9udL5VT5zb7Ko3d+yTKHn/t63eOljfSVSEt1R4Ffse2ZwkZr2TbcY4b3v/7Z1b5VIZ/4L0Q0U93BLq36PRzRv/AH4joj+Drvk98Q4seYqcuBLft3cJU/kWNL/TMcC+fACUJuBU3vFfqog8U/f10iPa0OO+anXnm7z4klC5DRRnOIPpwyY7+M20uXUjg/YcNKd4u2RAtiJpDVR+MF04T49cdh7LEhH6H0AGrgXGaAlRKUgqM+Aid1IjVYRzJnnK1MXbEXLfDWP8A8yZQvY2bJv7vxYT1arPnYewiX/nSjdQ/t3D2fWZsh7/WG1veWN6JLO02mHuuDF9H9HfPnK4ae7Yl44NmHGaH661DoEDe/Qc73ZJDKeioOzxBX4tM7sLvEdo0TXMVMh3a3w9pTjnLGSOGCt7GaBPns9yFpWsAnnsQHk8/m8FeWwl6Z/ph71qqdIs1f9SvfXxPeW7b4lfil/hxmhHfCw+E4+oOutsv7vd2v799oPqP6v/qf63+j859I0bas4vhPOvduP/CXcfAA==</latexit>

l
jy�

o@jy�

w x

y

z

jjdX8 +K

jy
y

+K

+Q
M+

`2
i2

r
�H

H

+QM+`2i2 r�HH

LSyk
Cm`�

a�Hĕp2

`QQ7
�++2bb

µ

'

�" y o
w *QHH2+iBQM YRXy Fo
o AM/m+iBQM y o
l AM/m+iBQM @yX8 Fo

a?B2H/ @RX8 Fo

*�i?Q/2 @RR Fo

z

⇠⇠

kj
+K

RX
e9

+K
RX

y
+K

µ

✓

4

Quick summary on VD-design

Cathode

Top Anode

Bottom Anode

~7
m

 (P
ro

to
D

U
N

E-
V

D
) ;

 ~
13

m
 (F

D
-V

D
)

E

E

The drift is separated into 2 volumes, the cathode is hanged in the middle
Anodes reads the electrons at the top and the bottom of the drift volume

-> Equipped with different electronics (‘Top’ and ‘Bottom’ Electronics)

CRP

ColdBox

The anodes are made of 2 drilled PCBs:

○ The PCB faces (View) are etched to make strips
-> Three orientations [±30°, +90°]
○ Electrons leave an induction signal (on

View 0 & 1) and are collected on View 2

PCBs are held together by the ‘Charge Readout Plane’ : CRP [3×3.4 m2]

Four CRPs installed in
ProtoDUNE-VD
-> Each tested in real
conditions in the
ColdBox with cosmic
data

e-

e
-

ColdBox schematic drawing:

5

Decode & store the data
The raw file format is a HDF5 file, that contains DAQ information and data (from charge and PDS)
-> LARDON directly reads the raw data and headers, and so is Art-free

numpy
numba

The 14-bit ADCs are read as multiple 8-bit uint and bit operations are performed to retrieve

From the headers, lardon gets the event timestamp and some run informations.
Lardon can now handles the case when one (or more) WIB frames are not written by the DAQ.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

uint8 #0 uint8 #1 uint8 #2 uint8 #3 uint8 #4 uint8 #5 uint8 #6
A DC # 0 A DC # 1 A DC # 2 A D C # 3

(…)

↳ These functions are accelerated by numba

Waveforms are stored in a numpy array of shape (crp, channel, tick):

- Channel ordering is in ‘DAQ’ ordering ie in the order of reading the raw data
- Not user-friendly, as consecutive channels can be from different views
- Pedestal, ROI and hit finder are independent operations on waveforms

Corresponding ‘shadow’ mask array (crp, channel, tick) for noise/signal separation
- Filled with Boolean where True/1 = Noise; False/0 = Signal
- Updated during pedestal/ROI calls during the noise filtering

1 CRP = 3072 channels
Coldbox : 1 CRP
ProtoDUNE-VD: 4 CRPs
FD-VD: 160 CRPs

■: Masked

- - - : Thresholds

— : Hit

After 1st pass

After FFT

After CNR + Hit Finder

6

Pedestal and ROI finder
1. Scan each waveform and compute the mean and rms of the un-masked data points
2. Update the mask based on ADC thresholds (1st pass) and ADC thresholds + signal shape
(subsequent pass)

The functions for pedestal
mean + rms computation and
ROI search are accelerated
with numba

These 2 steps are called twice
after each call to a noise
filtering algorithm.

7

FFT low pass and Microphonic noise
FFT Amplitude

— Projection
— Low-pass cut

Subtract
Median
Noise

A low-pass FFT filter is applied to the data.
 There is a smooth gaussian cut after the
frequency threshold to avoid ringing
artifacts.

The microphonic noise appears like a slow
pedestal variation in space and time

-> Unclear origin ; probably from an
internal vibration

Microphonic-filter:
At each time tick of each waveform,
compute the median noise in a
surrounding window

bottleneck

numpy

8

Coherent Noise Filtering

The coherent noise is shared among channels on the same electronic card and view
-> Profit from the data being organized in DAQ channel ordering

Coherent Noise Filter:
- The data array is reshaped into (sub)-blocks of electronic cards [e.g (3072, 8192) -> (24, 128, 8192)]
- In each view, the mean noise in block is computed and subtracted
- The array is reshaped to its original shape

numpy

Tick

D
AQ

 ch
an

ne
l

Tick
D

AQ
 ch

an
ne

l
Block 1

Block 2

Block 3

Block 4

Block 5

Reshape

Mean noise
per card
per tick
per view

Subtract Reshape

9

Coherent Noise Filtering

TDE BDE

The dependance of the noise with the strip length is different for top and bottom electronics

TDE BDE The CNR procedure needs to take
this into account to be useful for
the small induction strips

-> In lardon the noise is
weighted by the strip length in
the BDE case• Normal CNR

• Length-weight CNR

NB : plots made with CRP1 data (different geometry)

Induction view Induction view

10

Reconstructed Containers

Reconstructed objects (hits, 2D tracks, 3D tracks, Single deposition, Ghosts) are stored as a list of
class objects with :

- General informations (like position, charge, length, angle, …)
- Single ID
- List of sub-containers (informations and ID)

Hit

ID
Position
charge

…

2D track

ID

[hits]

Start/end
charge
length

…

3D track

ID

[hits]
[2D track]

Start/end
charge
length

…

Single Dep

ID

[hits]

Position
charge

…

Ghost

ID

[hits]

Start/end
charge

3D track ID
…

11

Hit Finder
numpy
numba

Tick

D
AQ

 ch
an

ne
l

The mask array tells wether an ADC point is consider noise or signal
-> Search for long enough consecutive ‘signal’ blocks to make a ‘ROI’

■ : potential signal

□: noise

A hit is defined from rise and fall times above a threshold
based on the pedestal RMS
In case of overlapping hits, a dip condition is also required ,
multiple hits can be found in one ROI

trise tfall

hi
t s

ta
rt

hit stop

Time

A
D

C

ROI

dip

Threshold

For the collection view: search for unipolar hit(s)

■: hit found
Δttotal

12

Hit Finder
numpy
numba

Tick

D
AQ

 ch
an

ne
l

The mask array tells wether an ADC point is consider noise or signal
-> Search for long enough consecutive ‘signal’ blocks to make a ‘ROI’

■ : signal?

□: noise

hi
t s

ta
rt

hit stop

ROI

The maximum of the cum.sum
waveform corresponds to the
zero crossing of the induction

signal

Cum.sum of induction signal ■: hit found

NB: When the cum.sum
does not return to zero, it

can be a sign that some
signal has been collected

For the induction views:
1. Make a cumulative sum of the ADC in the ROI

—> transforms a bipolar signal into a unipolar signal
2. Search for unipolar hit(s) in the cum.sum waveform with
similar criteria as for the collection view
↳ Gives hit(s) time limits

3. Within the hit time limits, search for bipolar hits
4. In case step 2 and 3 are unsuccessful, search for unipolar hit(s) in the original ROI

trisetfalltrisetfall

Δtmax-min

Δttotal

13

Hit Finder
numpy
numba

Tick

D
AQ

 ch
an

ne
l

The mask array tells wether an ADC point is consider noise or signal
-> Search for long enough consecutive ‘signal’ blocks to make a ‘ROI’

hi
t s

ta
rt

hit stop

ROI

With the cum.sum waveforms,
overlapping signals are easier

to find

Cum.sum of overlapping induction signals
■: hit found

ROI

■: hit found

For the induction views:
1. Make a cumulative sum of the ADC in the ROI

—> transforms a bipolar signal into a unipolar signal
2. Search for unipolar hit(s) in the cum.sum waveform with
similar criteria as for the collection view
↳ Gives hit(s) time limits

3. Within the hit time limits, search for bipolar hits
4. In case step 2 and 3 are unsuccessful, search for unipolar hit(s) in the original ROI

■ : signal?

□: noise

14

Example - raw event

15

Example - after FFT

16

Example - after CNR

17

Example - after microphonic

18

Example - Hit found

19

Hit indexing and 2D tracks
The found hits are indexed in a 2D Rectangular-tree (R-tree)

- One R-tree per view
- Index hits by their position and time

For a given element (hit), the R-tree gives the n nearest elements:

R-tree

Hit position

H
it

 ti
m

e

e.g. n = 4

■hit considered
■close hits
□too far hits

From the collection of closed-by hits, 2D tracks are found using a
Kalman-like algorithm :

Pierre Billoir, « Track fitting with multiple scattering: A new method », NIM 225 (1984), 352-366.

-> The track is built by recursively
adding neighboring hits and
updating the track parameters

-> Once built, the hits attached to
the 2D track are properly re-
ordered using an MST graph

More details

More details

2D hit R-tree

More details

https://www.sciencedirect.com/science/article/abs/pii/0167508784902746

20

Building 3D tracks
The found 2D tracks are indexed in a 2D R-tree:

1st Dimension : The view
2nd Dimension : The track time span

For a given track in a given view, the R-tree returns all tracks
that intersects in time in the other views.
-> In case of ambiguities, the best match is chosen based on total
charge balance over the overlapping time

0 1 2 View

2D
 T

ra
ck

 T
im

e

Track start

Track stop
2D track R-tree

scipy

R-tree

The hit coordinates of the matched 2D tracks are transformed into 3D

 -> Compute the missing coordinates of each hits of View i with the interpolated position of View j,
based on the time.

A Matching score is computed to
excluded bad association in the analysis

Good match Bad match

More details

More details

21

Other reconstructed objects

In VD design, the anode plane is
powered at +1kV -> There is a
‘dummy’ drift field region
between the anode (View 2) and
its closest ground G

ho
st

Track

Ground

Anode

Anode

Cathode

Ground

E

E

E

E

: hit found

‘Ghost tracks’

‘Single depositions’

At the end of the reconstruction, test
wether free hits have correspondances in
the other views, if the strips overlaps and
if the free hits are isolated:

Vi
ew

 1

View 0

View 2 Vi
ew

 1View 0

View 2Yes: No:

LARDON reconstruct the ghost tracks in 3D using the parameters of its associated physics 3D track

More details

More details

22

Reconstruction of light signal

Recently, the PDS readout have been integrated in the DAQ system
-> Adapted LARDON to read both charge and light signals

The ×-ARAPUCAs are decoded, pedestal-aligned, and light signals are found with similar algorithm
as for the hit finder.

4 ×-ARAPUCAs
installed in the ColdBbox

All 3D tracks matched
with 1 ×-ARAPUCA

All 3D tracks matched
with 2 ×-ARAPUCAs

All 3D tracks not matched
with any ×-ARAPUCAs

Light flashes are matched with reconstructed 3D tracks if they are compatible in time (accounting
for delays between light and charge data frames), and if there are no matching ambiguities

[Work in Progress]

23

Output File
pytablesAll reconstructed objects are stored in a hdf5 file ; lardon is root-free!

For the VD-CB runs, the output file size is around ~9 MB (versus ~1.3 GB for LArSoft)
Currently, the output file contains 11 tables and 7 arrays of variable length

General tables :
Infos stores key parameters of the reconstruction

e.g. Drift Field, Run number, File number, …
Chmap stores the channel mapping

Map DAQ ordering to {View, Channel}
Event gives a summary of each event

e.g. number of hit/track reconstructed
Reco stores the reconstruction parameters used

Reconstruction tables:
Pedestals contains the raw and filtered pedestal of each event

-> Stored as an array arranged in DAQ ordering
Hits, tracks2d, tracks3d, single_hits, ghost are for high-level objects

-> One entry per object
-> The table contains the general reconstructed information
E.g. position, charge, length …

Object Tree:
/ (RootGroup) 'Reconstruction Output’
/infos (Table(1,)) 'Infos'
/chmap (Table(1,)) 'ChanMap'
/event (Table(96,)) 'Event'
/ghost (Table(85,)) 'Ghost Tracks'
/pedestals (Table(96,)) 'Pedestals'
/hits (Table(48522,)) 'Hits'
/single_hits (Table(1012,)) 'Single Hits'
/tracks2d (Table(1888,)) 'Tracks2D'
/tracks3d (Table(560,)) 'Tracks3D'
/trk2d_v0 (VLArray(546,)) '2D Path V0 (x, z, q, ID)'
/trk2d_v1 (VLArray(520,)) '2D Path V1 (x, z, q, ID)'
/trk2d_v2 (VLArray(822,)) '2D Path V2 (x, z, q, ID)'
/trk3d_v0 (VLArray(560,)) '3D Path V0 (x, y, z, dq, ds, ID)'
/trk3d_v1 (VLArray(560,)) '3D Path V1 (x, y, z, dq, ds, ID)'
/trk3d_v2 (VLArray(560,)) '3D Path V2 (x, y, z, dq, ds, ID)’
/ghost_tracks (VLArray(85,)) '3D Path (x, y, z, dq, ds, ID)'
/reco (Group) ''

Dump of one output file

More details

24

LARDON Resources
Reconstructing the same files through the same batch system (HT CONDOR on lxplus)

ColdBox run 1727 (top CRP3) : 512 files with 60 events in each file
LArSoft version v09_72_01d00

Time to reconstruct 1 file Memory usage for 1 file

25

About 85% of the time is dedicated to the data treatment (decoding, ROI, noise filtering)

For ColdBox data, ie only 1 CRP

LARDON Resources

Ran locally on LXPLUS

Some ideas to speed the data treatment :
○ Parallelization of noise filtering part - e.g. CRP per CRP

-> Can be mandatory for ProtoDUNE-VD data

○ Use ML to identify the signal in the raw waveforms
-> No iterative ROI and pedestal calls needed, with potentially a better signal identification
efficiency, this requires a training with a realistic signal simulation and realistic noise

○ Selectively filter the noise
- Signal represents only a small fraction of the event, no need to filter noise-only waveforms

CRP #5 CRP #4

Unresponsive card

26

LARDON results for the VD-Coldbox runs
Six CRPs has been tested with cosmic data in the VD-ColdBox

-> All runs has been reconstructed and analyzed through LARDON, ongoing efforts with LArSoft

As LARDON provides fast feedback, a few issues was found while the data was being taken:
- Missing HV soldering in CRP4&5 affecting the transparency
- Holes misalignments in CRP6 reducing the overall transparency
↳ Track Reconstruction was the only way to see the problem

CRP #6

27

LARDON results for the VD-Coldbox runs

Angle definition :

θ=90° : horizontal
θ=180° : vertical

Jura

Salève

x

y
z

θ

𝜑
Projection on CRP

Lardon is not fully efficient at reconstructing all tracks
○The code has never meant to be so

○ Not sure the 𝜑 is supposed to be flat as the coldbox is a below ground
and surrounded by blocks of concrete
○ Lardon cannot run on LArSoft simulations to have a proper estimate
of its reconstruction efficiency
(Cannot load the LArSoft libraries into LARDON to ‘decode’ the MC
data ; HDF5 output possibility from LArSoft to be investigated)

‘Antartica’ plot of

reconstructed 𝜑 angle

28

Conclusions, Perspectives
LARDON is a light, fast, simple reconstruction code in python

○ Originally developed for ProtoDUNE-DP, now adapted for the VD technology

○ Has been the Data Quality Monitor tool for the VD-ColdBox data campaign
↳ Gave fast and reliable results on the CRP performances, for both electronics
- Has been used to provide feedbacks on the self-trigger DAQ system test campaign VD Coldbox
- Will be useful for the PNS system test in the coming weeks

○ LARDON and LArSoft have similar results
-> In the analyses of ProtoDUNE-DP and VD-Coldox

○ LARDON is a standalone tool, and can be used as an online reconstruction for ProtoDUNE data

○ LARDON can also be used to test new ideas on data!
 There is room for improvements:

- At signal processing : noise filtering, ROI/hit finder
- At 3D reconstruction : complicated topologies, showers, vertexing, hit->3D
- Speed up, parallelization, GPU, memory usage, …

The code is on GitHub at : https://github.com/dune-lardon/lardon

https://github.com/dune-lardon/lardon

29

Mandatory Picture

Thank you for the workshop organization !

And a million thanks to Mike !

30

Developments needed for ProtoDUNE-VD data

- Deal with 12,288 channels in 4ms window events:
Parallelize the four CRP treatment ?

- Handle two electronics in a single event
The data from the two drift volume are merged in a single file, it will contain the two electronics

- Cathode at the center of the detector
Hits and tracks can be below or above the cathode
Adapt the track t0 computation

- Track stitching
Because of the Space-Charge Effect, tracks can have a discontinuity when crossing the cathode and
when crossing CRPs

- Ghost Finder
Improve the algorithm to not be confused with michel electron topology / delta rays

31

Hit indexing
For each view, all hits are :

- Order by decreasing drift time and increasing channel
- Indexed in a 2D R-tree (rectangular tree):

1st dimension : hit position (channel number)
2nd dimension : hit time extension (start->stop)

R-treeHit R-tree

Hit position

H
it

 ti
m

e

Hit start

Hit stop

For a given element (hit),
the R-tree gives the n
nearest elements:

Hit position

H
it

 ti
m

e

Hit position

H
it

 ti
m

e

e.g. n = 4

The distance between two hits
is the shortest path between
starts and stops
-> Keep only ‘close enough’
hits (user-defined)

-> Once a hit is tested during the
2D track finding, it is removed
from the R-tree

32

2D tracks : Kalman-like fit
The 2D tracks are found using a Kalman-like algorithm developed by P. Billoir

-> Same principle and mathematically equivalent to Kalman filter, but easier to understand and
implement

Pierre Billoir, « Track fitting with multiple scattering: A new method », NIM 225 (1984), 352-366.

The algorithm steps :
1. Seed : With first hit indexed + its
nearest neighbors, fit a 2D line
2. Test : from last hit attached to the
track test wether they belong to the
track based on a Χ2 evaluation :

3. Propagate : Update the track
parameters and error matrix based on
the new hits, remove the hits from the
index
4. Continue until no hits can be added
to the track
5. Start again, until the index is empty

�2 =
(ypredicted � ymeasured)2

�2
y,data + �2

y,filter

https://www.sciencedirect.com/science/article/abs/pii/0167508784902746

33

2D tracks : MST graph
scipyGraph theory can be used to ‘connect the dots’

-> A Minimum Spanning Tree minimize the weight (distance) between graph elements (hits)
without cycles

The MST graph, the hit ordering within
the track are re-organized.
Each element (hit) is connected to 1 or
more other elements.
In particular, one can identify:

- The track endpoints : elements with
only one connection
- Vertices from δ-ray : elements with
3 connections

34

3D tracks : Match
The found 2D tracks are indexed in a new R-tree:

1st Dimension : The view
2nd Dimension : The track time span

For a given track in a given view, the R-tree returns
all tracks that intersects in time in the other views:

When multiple overlaps occur in a view, the
best-match of track i is determined by:

0 1 2 View

2D
 T

ra
ck

 T
im

e

i

k2

k1

○ The smallest charge balance between track i and track k :

Where Q is the total track charge computed in the overlapping
time region
○ The shortest time delay between starts and stops

-> Each track gets one (or none) best-match in each view
-> If the best-matches are reciprocal, a 3D track can be built

<latexit sha1_base64="g9DNI7sRarbFFkH+0wkJUVMykj0=">AAAC3HicjVHLSsNAFD2N73fVhQs3wSIIYkmlqEvRjUsLVgu1hmSc6tC8mEyEUrpzJ279Abf6PeIf6F94Z0xBLaITkpw5954z9871k0CkynFeC9bI6Nj4xOTU9Mzs3PxCcXHpNI0zyXidxUEsG76X8kBEvK6ECngjkdwL/YCf+Z1DHT+74TIVcXSiuglvhd5VJNqCeYoot7hy3pYe69VcsVVzO30NNjVwiyWn7JhlD4NKDkrI13FcfME5LhGDIUMIjgiKcAAPKT1NVOAgIa6FHnGSkDBxjj6mSZtRFqcMj9gOfa9o18zZiPbaMzVqRqcE9EpS2lgnTUx5krA+zTbxzDhr9jfvnvHUtXXp7+deIbEK18T+pRtk/lene1FoY8/0IKinxDC6O5a7ZOZWdOX2l64UOSTEaXxJcUmYGeXgnm2jSU3v+m49E38zmZrVe5bnZnjXVdKAKz/HOQxOt8uVnXK1Vi3tH+SjnsQq1rBB89zFPo5wjLqp/xFPeLYurFvrzrr/TLUKuWYZ35b18AEUzZjD</latexit>

Qi �Qk

Qi +Qk

0 1 2 View

2D
 T

ra
ck

 T
im

e

Track start

Track stop

2D track R-tree

35

3D tracks : Trajectory and Calorimetry
The hit coordinates of the matched 2D tracks are transformed into 3D scipy

To complete the coordinates of the hits in View 0, the track of View 1 is interpolated (with the
Univariate Spline)

-> Can compute the missing coordinates of each hits of View 0 with the interpolated position of
View 1, based on the time. The 3D coordinates are then rotated to the orthogonal axis system
-> With the local track direction, can compute the 3D unit length (ds) of the hit

-> Repeat for the other views

Track 0

A « Matching score » d_match is computed as the
average distance between the hits in the tracks at
given drift position

-> Large d_match means a bad 3D matching
d_match

Good match Bad match

36

Ghost track finder

d = 1.2 cm

 35.6 fC

19
.4

 fC

Step 1 - Ghost/Track Separation :
After the 2D reconstruction, only in the Collection View :
If two tracks have their starting point close (<5 cm) and opposite direction ; the one with the
smaller total charge is considered the ghost of the other

- Cannot base the ghost separator on the
track length
- Works for low multiplicity / small tracks,
might need improvements for the
ProtoDUNE-VD data

In VD design, the anode plane is
powered at +1kV -> There is a
‘dummy’ drift field region
between the anode (View 2) and
its closest ground G

ho
st

Track

Ground

Anode

Anode

Cathode

Ground

E

E

E

E

37

Ghost track finder
Step 2 - Build the 3D Ghost
After the 3D reconstruction, if the track
associated to the ghost is used to build a 3D
track:

- Ghost z/drift position is mirrored wrt to the
3D track start (« x » in LArSoft)
- Ghost y position is given by the collection
strip (« z » in LArSoft)

- Use the 3D (θ, 𝜑) direction at the anode to
extrapolate the ghost direction and compute
the Ghost x position (« y » in LArSoft)

3D track start3D track start

Summing all reconstructed ghost allows to muon-scan
the structure above the anode in the ColdBox.

In ProtoDUNE-VD and FD-VD, ghost tracks can further
tag wether a track crossed the anode plane, e.g. :

- Cross computation of track t0
- Space Charge analysis

VD-ColdBox data

NB : LArSoft does not reconstruct yet the ghost tracks

38

Single deposition
Once the 3D track reconstruction is done, LARDON looks at un-matched hits and check wether
free hits also exists at the same time in other views

: hit found
If the single depositions are
- compatible in time among the views
- compatible in space:

Then a Single Hit is formed.

LARDON computes:
-the distance to the closest activity
-the charge in each view, in an
extended region (in space and time)

Vi
ew

 1

View 0
View 2 Vi

ew
 1View 0

View 2Yes: No:

Algorithm can be improved, some ‘single
hits’ identified can belong to a track

39

Librairies needed to run LARDON
python > 3.6
numpy -> Handles the data, ROI, FFT, …
numba -> Speeds up some code
scipy -> For interpolation, fits, MST graph
numexpr -> Fast computation of complicated where selection
bottleneck -> To compute moving median for microphonic noise
pytables -> Handles the hdf5 format (input and output)
rtree -> R-tree library for indexing multi-dimensional information
colorcet -> Nice palette of visually distinct colorblind-friendly colormaps
matplotlib -> For the control plots
uproot -> In case of handling ROOT files (MC, output)
jsonc -> To allow comments in the json files

For the analysis of the output files, recommended extra libraries:
iminuit -> python MINUIT fitter
pylandau -> Landau distribution
fast-histogram -> Make fast 1D & 2D histogram of large samples
vitables -> Visualize the content of a HDF5 file

I use conda environments to manage the librairies

40

Output File
For 2D and 3D tracks, arrays of variable length also exists

-> One for each view
-> Contains the list of hits used to build the track
-> one-to-one row correspondance between the arrays

The tables and the arrays are filled together such that entry i corresponds to the same object :

Example :
The third 3D track stored
has 5 hits from the View 1

NB : When a track has no hits in a given view,
the array is filled with two fake hits (at -9999,
-9999, -9999)

-> In the analysis, the 1st and last hits of a
track should not be considered anyway

(x, z, charge, hit ID) for 2D tracks
(x, y, z, Q, ds, hit ID) for 3D tracks

-> Array of tuples :

In https://github.com/dune-lardon/cookbook I gave some analysis examples with LARDON’s files
-> I plan to add more examples

https://github.com/dune-lardon/cookbook

41

Comparison with LArSoft

Comparison of LARDON and LArSoft
reconstruction on the VD-ColdBox data

-> Difference between LARDON and
LArSoft for various reconstruction
parameters

Small deviations seen for the
reconstructed charge and track times,
probably due to the fact that LARDON
does not deconvolve the hits

