ND-LAr Overview

Brooke Russell on behalf of DUNE

Wire-Cell Reconstruction Summit @ Brookhaven National Laboratory

April 11, 2024

Deep Underground Neutrino Experiment

On-axis broadband beam with 1285 km baseline spanning near to far detector

- Measure neutrino spectra at Near Detector (ND) & Far Detector (FD) in v-mode and v-mode
- Infer neutrino mixing probability by comparing *measured* spectrum to *predicted* spectrum with no neutrino oscillation
 - Fit neutrino mixing parameters

B. Russell

Neutrino Mass Ordering

Unambiguous mass ordering determination

 δ_{CP}

5σ sensitivity for 50% of δ_{CP} values Precision measurements of δ_{CP} as well as Δm_{32}^2 , θ_{23} , θ_{13}

Constraining Systematics with the DUNE ND

- Enable precise prediction of DUNE FD neutrino signal
- Flux, cross section, and detector response uncertainties constrained to few percent level by Near Detector (ND) Complex detector suite
 - ND-LAr + TMS v-Ar measurements
 - On-axis beam stability monitoring with SAND
- DUNE Precision Reaction-Independent Spectrum Measurement (PRISM)
 - Peak neutrino energy decreases with increasing observation angle relative to the beam direction
 - ND-LAr/TMS move up to 30 m off-axis
 - Data-driven oscillated FD flux prediction from ND data linear combinations

ND-LAr Detector

Principal objective:

Measure neutrino interactions on LAr with functionally similar detector response as FD

Design Drivers:

- ND LArTPC fiducial mass sufficient ND LArTPC acceptance to accurately predict FD LArTPC signal
 - > 5 m x 7 m x 3 m active volume
 - All-steel cryostat muon window (8.4 m x 4.1 m)
- Beam- pileup rejection efficiency associate ionization signals to fiducial neutrino interactions with high fidelity
 - Optical segmentation with low-profile TPC components
 - Pixelated charge readout
 - > High-photocoverage light readout

Specification	Value
Active LAr mass	138 metric tons
Module count	35
TPC count	70
Maximum ionization drift distance	50 cm
Drift electric field	500 V/cm (nominal)
Beam-transverse inter-module active LAr spacing	5.5 cm
Beam-downstream module-to-cryostat distance	20 cm (nominal)
Muon energy loss from downstream passive material	<3% at 600 MeV

Charge Readout

TPC-sensitive Detectors

Scintillation Light Readout

ArCLight Better spatial resolution LCM More sensitive to lower energy activity

Specification	Value
Photocoverage	30%
Light trap count	700 (ArCLight), 2100 (LCM)
SiPM count	8,400
Sampling rate	62.5 MHz
ADC synchronization	<1 ns
Photon detection efficiency	0.2% (ArCLight), 0.6% (LCM)
Timing resolution	~2 ns @ 200 PE (LCM)

LArPix

- Low-power, integrating amplifier with self-triggered digitization and readout
- Pixels are continuously "live", dormant until signal exceeds tunable threshold
- End-to-end system architecture large-format pixel anode tiles, cables, feedthroughs, controller, etc.

Specification	Value	Comment
Channel count	14,336,000	64 single-ended analog inputs / ASIC
Pixel pitch	3.7 mm	
Timestamp precision	100 ns	
Multi-hit separation time	1.2 µs	Chip configurable
Noise	800 e- ENC	
Gain	4 µV/e- (nominal)	Optional 2 µV/e- mode
Dynamic range	1.2 V	300 ke ⁻ at nominal gain
Channel linearity	< 1.2%	Pre-calibration
Tile leakage current	< 100 fA	
Power	2x10 ⁻⁴ W/channel	

B. Russell

Beam- Pileup at ND-LAr

LBNF is anticipated to be the world's most powerful neutrino beam, upgradeable to 2.4 MW Flash Spectrum

On average, **55** neutrino interactions per 10 μ s-wide LBNF beam spill at 1.2 MW beam power within 105 m³ active volume

Scintillation pileup obfuscates ionization association using scintillation light

Beam- Pileup at ND-LAr

LBNF is anticipated to be the world's most powerful neutrino beam, upgradeable to 2.4 MW Flash Spectrum

A light-tight meter-scale module design affords **few-to-few** charge-light signal association combinatorics, **a tractable challenge** for software solutions

Pileup Mitigation with Optical Segmentation

- Modularized detector provides additional timing information to enhance charge-light signal association through a tractable few-to-few linear system
- Geant4-level simulation studies motivate the degree of segmentation
 - Demonstrated lower bound on pileup mitigation performance with rudimentary reconstruction methods

See R. Diurba's talk earlier today on ND-LAr/2x2 Software Interfaces

y [mm]

Wire-Cell at ND-LAr

- Wire-Cell native 3D charge pattern recognition should be very natural to apply to ND-LAr pixel readout data
 - Existing software infrastructure is well equipped to study the nuanced differences between the native Wire-Cell tomographic imaging and true 3D charge data from LArPix
 - larnd-sim detector simulation is benchmarked against O(10 M) cosmic-ray events
 - LArPix effects likely to complicate Wire-Cell adaptation:
 - Single channel successive triggers configurable electronics response (can modify at 2x2)
 - Far-field advanced hits and lobing effects geometry-dependent hardware effects (cannot modify at 2x2 without detector extraction)
- Wire-Cell toolkit has demonstrated the capability to adapt scintillation light signal processing to aid charge reconstruction
 - Small modifications to existing Wire-Cell techniques have the potential to quickly make a significant impact on interaction-level charge-light signal association
 - Scintillation light waveform unfolding with compressed sensing
 - Many-to-many charge-light signal matching with fast external-tracker boundary conditions

Cosmic-ray raw data

2 x 2 Demonstrator

- 4x 60%-scale fully-integrated detector modules
 - 2.6 metric ton active LAr mass
 - 337,600 charge-sensitive pixels at ~4 mm pitch and ~200 keV threshold
 - 25% light trap optical coverage with 384 6-mm SiPMs

 $v_{\mu}/cm^2/GeV/year (\times 10^{12})$

- Continuously live charge readout, independent of photon system trigger
- Repurposed MINERvA planes
 - 12 upstream tracking planes
 - 8 downstream tracking planes
 - 4 downstream tracker-ECAL planes
 - 8 downstream ECAL planes
 - 12 downstream HCAL planes
- FNAL medium energy NuMI v beamline
 - Detectors stationed on-axis 1.04 km from the NuMI target in the MINOS underground hall at Fermilab
 - 100 m underground cavern depth (225 m.w.e. overburden)

B. Russell

ND-LAr design technical demonstration
v-Ar interactions in the at few-GeV regime

See talks by S. Dennis (next) and J. Micallef (tomorrow) on Pandora and MLReco, respectively, reconstruction at ND-LAr/2x2

Technical Demonstrations at the 2x2 Demonstrator

3D reconstruction of neutrino signals

Evaluation of impact of un-instrumented volumes

Track-matching with fast external trackers

Charge-light signal correlations in a high intensity neutrino beam

Excellent opportunity to test reconstruction at LBNF-like neutrino energies before DUNE

Physics at the 2x2 Demonstrator

Pion production

- ν -Ar interactions at DUNE are expected to have a high • hadronic invariant mass component
 - Multi-pion channels are less theoretically mature relative to other, simpler topologies (e.g. CC 0π)
 - Absence of measurements on Ar-40
- Both on-axis 2x2 Demonstrator (and off-axis ICARUS) will measure this phase space with NuMI

2x2 Status

- Module acceptance testing
- Module-cryostat integration in NuMI underground hall
- Detector infrastructure construction
- Warm electronics checkout
- LAr fill & cold electronics checkout (imminent)
- NuMI beam operation (shortly after)

Summary

DUNE is a next-generation long-baseline neutrino oscillation program designed to measure neutrino mixing parameters at high precision

- ND-LAr is a critical component in the DUNE oscillation program providing constraints on flux, interaction, and detector responses
- An optically segmented LArTPC with pixelated charge readout is required to maintain signal fidelity with beam-neutrino pileup

The 2x2 Demonstrator will provide critical input to eventual ND design

- Demonstrating charge-light signal association at high fidelity is a near-term priority

Wire-Cell is a natural reconstruction approach to apply to ND-LAr data