Opportunities for Pandora and Wire-Cell

Maria Brigida Brunetti on behalf of the Pandora team

12 April 2024 / The Second Wire-Cell Reconstruction Summit / BNL

The Pandora project and team

- An STFC project: Stage 1 Oct 2019-Mar 2024; Stage 2 now running Apr 2024 end 2027/28
- Planning for subsequent phase already underway; includes more physics exploitation of software
- Predominantly funded for DUNE, with some PDRA and student funding for SBN

John Marshall

Andy Blake

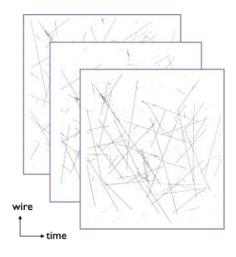
Dom Brailsford

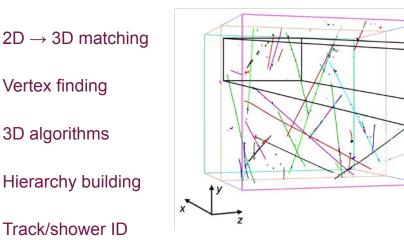
PandoraPFA

Leigh Whitehead

Andy Chappell

Isobel Mawby


Ryan Cross


Maria Brigida Brunetti

Pandora's multi-algorithm approach

- Many logical steps (> 100 algorithms) to go from input hits to 3D hierarchies
- Build different techniques, including deep learning, and physics and detector knowledge in the pattern recognition algorithms

2D pattern recognition

Two very different, excellent reconstruction paradigms

Pandora	Wire-Cell
Build 2D clusters View matching 3D reco	Wire signal matching 3D hits 3D reco
Common steps , e.g. Vertex finding, Space point construction Common interests , e.g. AI/ML/DL	

Together they comprise the bulk of all LArTPC pattern recognition code that has been applied to/proven on real data

Common needs

- Many LAr-TPC experiments, analysers and reconstruction challenges, and relatively few reconstruction developers
- Train/support a large user base
- Recruit from outside the core team
- Build two-way bridge between reconstruction and analysis
- Tune algorithms for analysis
- Support bespoke needs from experiments/real data
- (...while satisfying funding agencies about return on their investment!)

Strong motivation to find synergies/work together

Different Implementations

- Both external to ART/LArSoft
- By design, codebase implemented within external toolkits
- Some of our algorithms are similar, but...
 - Different inputs (wire/ticks vs hits x/z)
 - Different underlying classes, and different codebase

What can be shared?

- Easier example: ML algorithms (or at least architecture)
- Harder example: cluster growing in Pandora
- Mapping internal representation of objects to common output Sharing algorithms would rely on interfaces on both sides

How to collaborate?

- Sharing algorithms
- Cross-collaborative work for validation benchmarking/comparison framework
 - Understand strengths and differences to enhance both paradigms
- Common set of I/O training data very useful to integrate more AI/ML techniques
 - Can share the same trained models
 - Challenges related to how we represent hits (e.g. need both write recob hits)

How to collaborate? (2)

- Opportunity to run Pandora and Wire-Cell alongside each other to enhance a total reconstruction
 - Pandora and Wire-Cell may be sensitive to different topologies
 - Can combine selected samples to boost physics sensitivity
 - Can combine per-event outputs together to get PID, energy reco, etc.
- Can feed each other's outputs in input
 - Pandora could benefit from using in early pattern recognition the relationships between hits across views from Wirecell 3D hits
- Write to common LArSoft objects?
- Common slicing procedure?